MaTeGnu Mathematik mit **Te**chnologie an **G**rundvorstellungen orientiert nachhaltig unterrichten Modul 2: Integralrechnung verständnisorientiert unterrichten

Jürgen Roth

MaTeGnu - Kohorte 1

25.11.2025

Didaktik der

Mathematik

Sekundarstufen

Rheinland-Pfälzische Technische Universität

Kaiserslautern

MaTeGnu

Modul 2: Integralrechnung verständnisorientiert unterrichten

- 4.1 Grundvorstellungen zum Integral im Überblick
- 4.2 Einstieg: Rekonstruieren 🖜
- 4.3 Erweitern: Bestimmen eines orientierten Flächeninhalts
- 4.4 Vertiefen: Kumulieren
- 4.5 Hauptsatz der Differentialund Integralrechnung (HDI) 🖜
- 4.6 Anhang 🖜

mategnu.de RPTU

MaTeGnu

Modul 2: Integralrechnung verständnisorientiert unterrichten

- **4.1** Grundvorstellungen zum Integral im Überblick
- 4.2 Einstieg: Rekonstruieren
- 4.3 Erweitern: Bestimmen eines orientierten Flächeninhalts
- 4.4 Vertiefen: Kumulieren
- 4.5 Hauptsatz der Differentialund Integralrechnung (HDI)
- 4.6 Anhang

mategnu.de RPTU

Verständnisanker

Verständnisanker

Prototypische Situation zum Ausbilden von Grundvorstellungen & einem Erklärungskontext zu einem mathematischen Sachverhalt.

Eine Situation eignet sich als Verständnisanker, wenn

- sie leicht durchschaut werden kann und
- alle für ein Verständnis wesentlichen Strukturelemente vorkommen und gedeutet werden können.

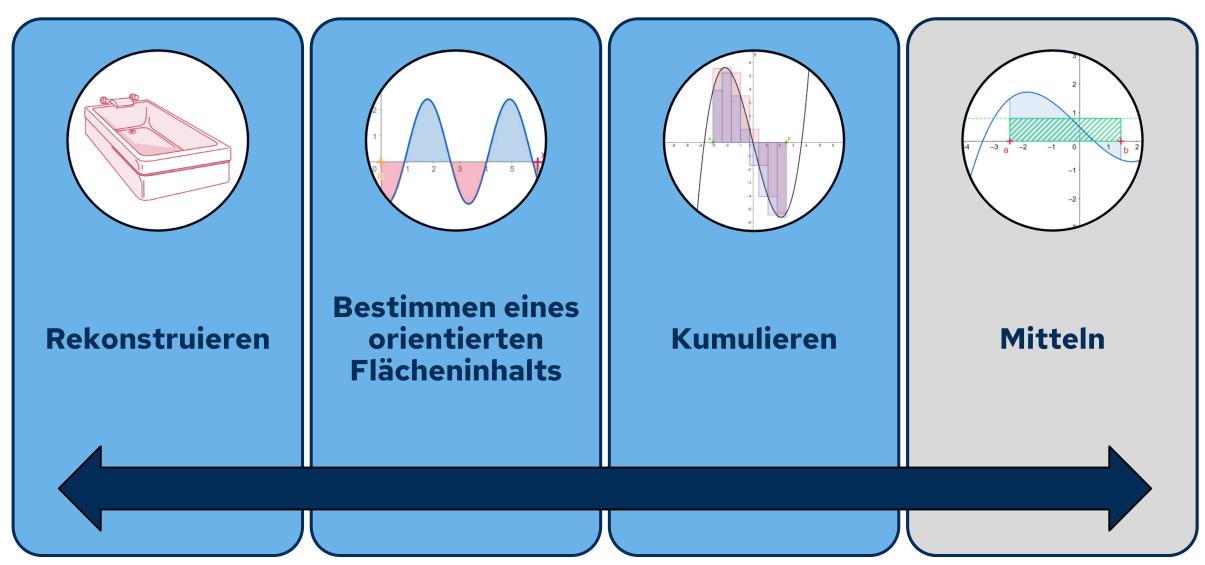
Ziel des Aufbaus eines Verständnisankers

Lernende können in neuen Situationen, in denen der mathematische Sachverhalt eine Rolle spielt, durch Analogiebildung zum Verständnisanker, passende Grundvorstellungen aktivieren.

Beispiel

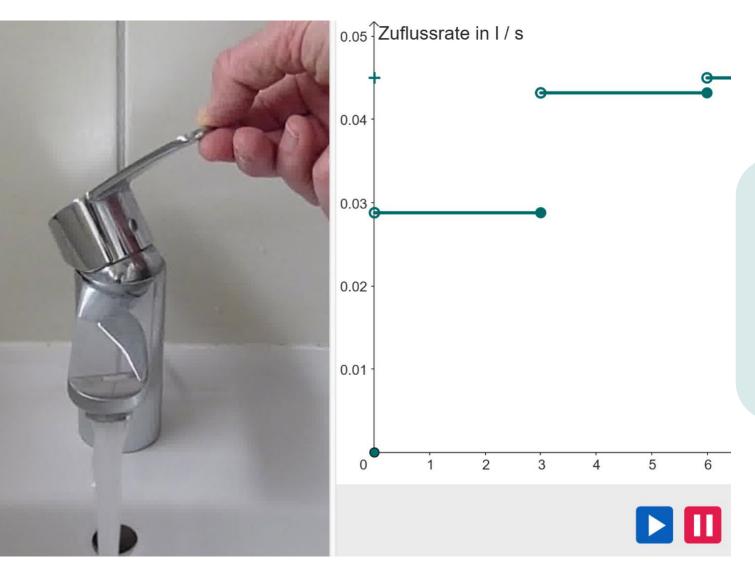
- Ein **Verständnisanker** für Grundvorstellungen zum Integral ist die Frage nach der Füllmenge einer Badewanne bei bekannter Zu- und Abflussgeschwindigkeit.
- Anhand der Badewannensituation können die Grundvorstellungen "Integrieren als Rekonstruieren", "Integrieren als Bestimmen eines orientierten Flächeninhalts" und "Integrieren als Kumulieren" inhaltlich durchschaut werden.

Grundvorstellungen zum Integralbegriff



Verständnisanker

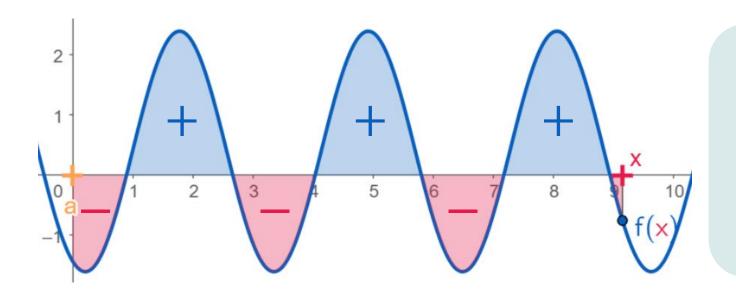
Füllmenge einer Wanne bei bekannter Zu- und Abflussgeschwindigkeit.



Grundvorstellung Integrieren als Rekonstruieren

Ein bestimmtes Integral rekonstruiert die Gesamtänderung einer Größe (den Gesamteffekt der Änderung) aus ihrer Änderungsrate.

Grundvorstellung: Integrieren als Bestimmen eines orientierten Flächeninhalts



Grundvorstellung

Integrieren als Bestimmen eines orientierten Flächeninhalts

Ein bestimmtes Integral ist eine Bilanz von Flächeninhalten.

Orientierter Flächeninhalt

$$I_{a}(x) = \int_{a}^{x} f(t)dt$$

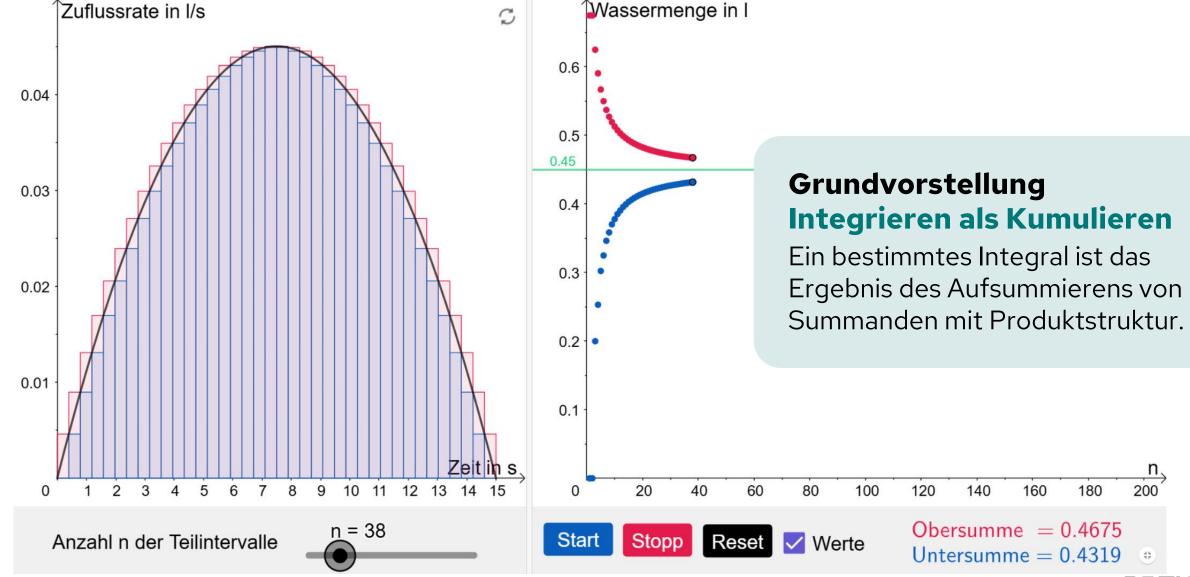
= (Summe der Inhalte aller oberhalb der x-Achse liegenden Flächenstücke zwischen α und x)

- (Summe der Inhalte aller unterhalb der x-Achse liegenden Flächenstücke zwischen a und x)

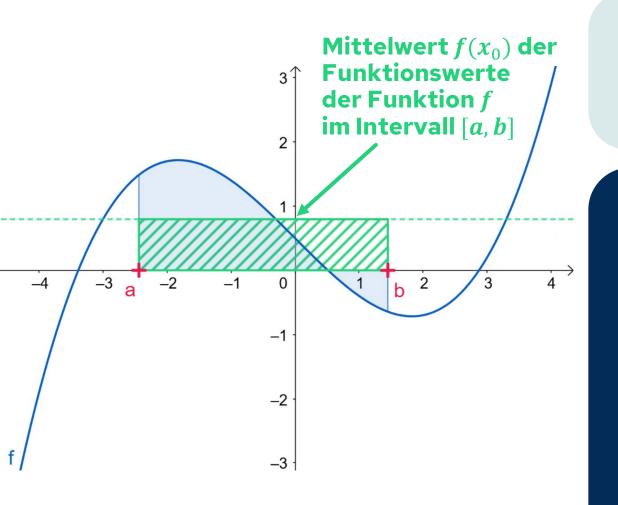
Grundvorstellung: Integrieren als Kumulieren

Verständnisanker

Füllmenge einer Wanne mit bekannter Zu- und Abflussgeschwindigkeit.



Grundvorstellung: Integrieren als Mitteln



Grundvorstellung Integrieren als Mitteln

Ein bestimmtes Integral mittelt die Funktionswerte der Integrandenfunktion im Integrationsintervall.

Mittlerer Funktionswert

- Mit dem mittleren Funktionswert $f(x_0)$ in einem Intervall [a, b] kann der orientierte Flächeninhalt $I_a(b)$ unter dem Graph von f als (orientiertes) Rechteck realisiert werden.
- Damit gilt: $I_a(b) = (b a) \cdot f(x_0)$
- Für den Mittelwert $f(x_0)$ folgt:

$$f(x_0) = \frac{1}{b-a} \cdot I_a(b)$$

MaTeGnu

Modul 2: Integralrechnung verständnisorientiert unterrichten

- 4.1 Grundvorstellungen zum Integral im Überblick
- 4.2 Einstieg: Rekonstruieren
- 4.3 Erweitern: Bestimmen eines orientierten Flächeninhalts
- 4.4 Vertiefen: Kumulieren
- 4.5 Hauptsatz der Differentialund Integralrechnung (HDI)
- 4.6 Anhang

mategnu.de RPTU

Vgl. GV "Ableitung als lokale Änderungsrate"

3.5

Verständnisanker

Füllmenge einer Wanne bei bekannter Zu- und Abflussgeschwindigkeit.

12.5

10

7.5

2.5 -

-2.5

-5

-7.5

0.5

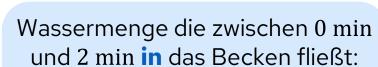
Frage: Wie lässt sich aus der Zuflussbzw. Abflussgeschwindigkeit auf die Wassermenge V(t) in der Wanne zum Zeitpunkt t schließen?

Situation

In eine leere Badewanne wird 2 Minuten lang Wasser mit konstanter Zuflussgeschwindigkeit von 10 Litern pro Minute eingelassen.

Anschließend wird die Wasserzufuhr gestoppt und gleichzeitig der Abfluss geöffnet, aus dem das Wasser mit einer Abflussgeschwindigkeit von 5 Litern pro Minute abfließt.

Nach weiteren 3 Minuten wird der Abfluss wieder geschlossen.



15 Zuflussrate Z(t) in I/min

$$10\frac{l}{\min} \cdot (2 \min - 0 \min)$$
$$= 10\frac{l}{\min} \cdot 2 \min = 20 l$$

Wassermenge die zwischen 2 min und 5 min aus dem Becken fließt:

$$-5 \frac{l}{\min} \cdot (5 \min - 2 \min)$$
$$= -5 \frac{l}{\min} \cdot 3 \min = -15 l$$

Verständnisanker

Füllmenge einer Wanne mit bekannter Zu- und Abflussgeschwindigkeit.

Zufluss-Phase: Wassermenge die zwischen 0 min und 2 min in die Wanne fließt:

$$10\frac{l}{\min} \cdot (2 \min - 0 \min) = 10 \frac{l}{\min} \cdot 2 \min = 20 l$$

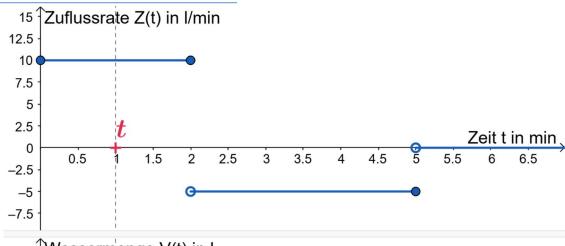
Allgemein gilt für die Wassermenge V(t) in der Wanne zum Zeitpunkt t mit $0 \le t \le 2$: $V(t) = 10 \cdot t$

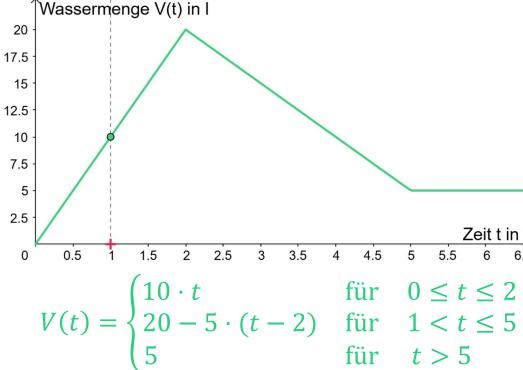
Abfluss-Phase: Wassermenge die zwischen 2 min und 5 min **aus** der Wanne fließt:

$$-5\frac{l}{\min} \cdot (5 \min - 2 \min) = -5\frac{l}{\min} \cdot 3 \min = -15 l$$

Nach 5 min sind also $20 - 5 \cdot (5 - 2) = 5$ Liter Wasser in der Wanne.

Allgemein gilt für die Wassermenge V(t) in der Wanne zum Zeitpunkt t mit $2 < t \le 5$: $V(t) = 20 - 5 \cdot (t - 2)$





Verständnisanker

Füllmenge einer Wanne mit bekannter Zu- und Abflussgeschwindigkeit.

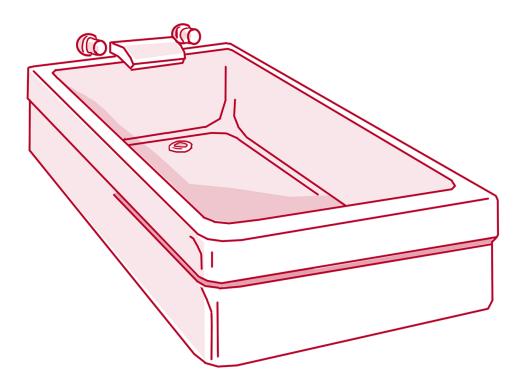
Rückblick

- Aus der Zuflussgeschwindigkeit des Wassers wurde die Wassermenge V(t) rekonstruiert.
- Die Zuflussgeschwindigkeit ist die (momentane)
 Änderungsrate der Wassermenge in der Wanne.
- Aus der Änderungsrate Z(t) wurde die Bestandsfunktion V(t) wiederhergestellt. [wiederherstellen = integrare (lat.)]

Grundvorstellung

Integrieren als Rekonstruieren

Ein bestimmtes Integral rekonstruiert die Gesamtänderung einer Größe (den Gesamteffekt der Änderung) aus ihrer Änderungsrate.



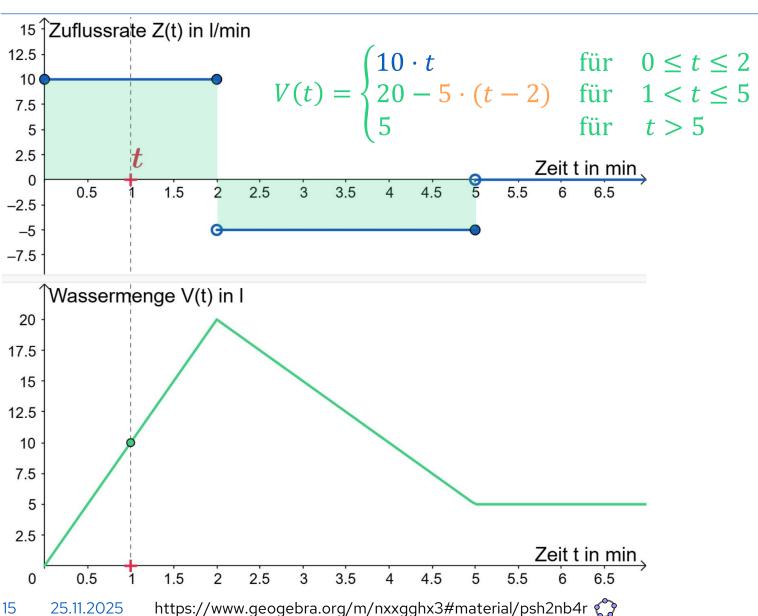
MaTeGnu

Modul 2: Integralrechnung verständnisorientiert unterrichten

- 4.1 Grundvorstellungen zum Integral im Überblick
- 4.2 Einstieg: Rekonstruieren
- **4.3** Erweitern: Bestimmen eines orientierten Flächeninhalts
- 4.4 Vertiefen: Kumulieren
- 4.5 Hauptsatz der Differentialund Integralrechnung (HDI)
- 4.6 Anhang

mategnu.de RPTU

Grundvorstellung: Integrieren als Bestimmen eines orientierten Flächeninhalts



Verständnisanker

Füllmenge einer Wanne bei bekannter Zu- und Abflussgeschwindigkeit.

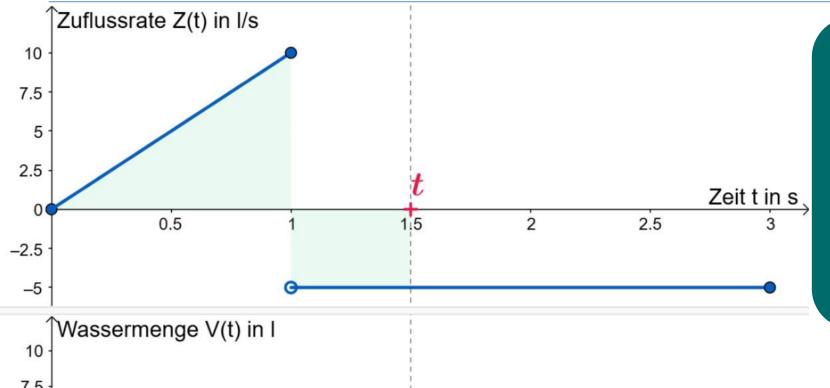
Die Produkte $10 \cdot t$ und $5 \cdot (t-1)$ können als Flächeninhalte von Rechtecken gedeutet werden.

V(t) kann als Summe vorzeichenbehafteter Flächeninhalte von Rechtecken, also als orientierter Flächeninhalt, gedeutet werden.

Grundvorstellung: Integral als orientierter Flächeninhalt

Verständnisanker

Füllmenge einer Wanne mit bekannter Zu- und Abflussgeschwindigkeit.



Die Produkte $\frac{1}{2} \cdot t \cdot 10t$ und $5 \cdot (t-1)$ können als Flächeninhalte eines Dreiecks bzw. eines Rechtecks gedeutet werden.

V(t) kann als die Summe vorzeichenbehafteter Flächeninhalte, also als orientierter Flächeninhalt, gedeutet werden.

Wassermenge V(t) in I
$$V(t) = \begin{cases} \frac{1}{2} \cdot t \cdot 10t & \text{für } 0 \leq t \leq 1 \\ \frac{1}{2} \cdot 10 - 5 \cdot (t - 1) & \text{für } t > 1 \end{cases}$$

$$\frac{\text{Zeit t in s}}{\text{16}}$$

$$\frac{\text{Zeit t in s}}{\text{16}}$$

$$\frac{\text{Zeit t in s}}{\text{16}}$$

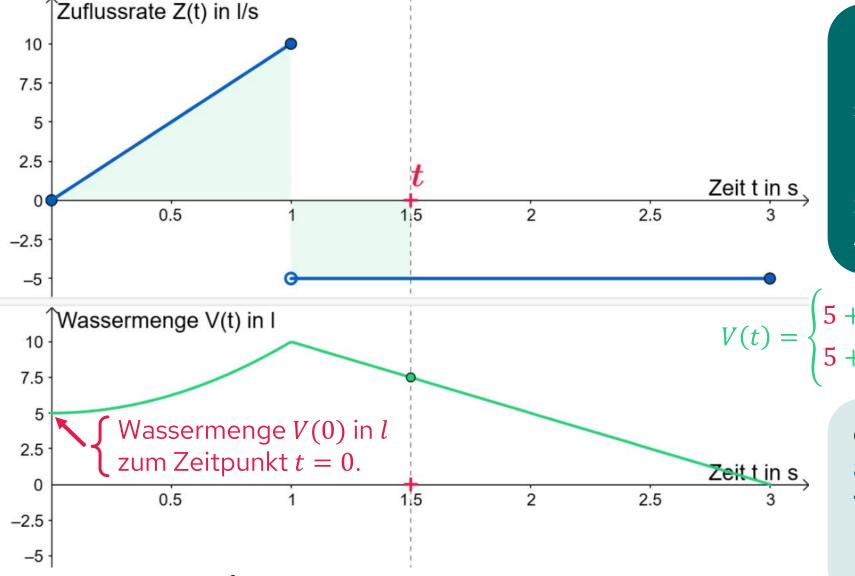
$$\frac{\text{Negative Wassermenge?}}{\text{Negative Wassermenge?}}$$

RPTU

Grundvorstellung: Integral als orientierter Flächeninhalt

Verständnisanker

Füllmenge einer Wanne mit bekannter Zu- und Abflussgeschwindigkeit.



https://www.geogebra.org/m/nxxgghx3#material/xzbwhbkb

25.11.2025

Bemerkung

Der aktuelle Bestand ergibt sich aus dem rekonstruierten Gesamteffekt der Änderung und dem **Anfangsbestand** zu Beginn der betrachteten Änderungen.

 $V(t) = \begin{cases} 5 + \frac{1}{2} \cdot t \cdot 10t & \text{für } 0 \le t \le 1\\ 5 + \frac{1}{2} \cdot 10 - 5 \cdot (t - 1) & \text{für } t > 1 \end{cases}$

Grundvorstellung Integrieren als Bestimmen eines orientierten Flächeninhalts

Ein bestimmtes Integral ist eine Bilanz von Flächeninhalten.

MaTeGnu

Modul 2: Integralrechnung verständnisorientiert unterrichten

- 4.1 Grundvorstellungen zum Integral im Überblick
- 4.2 Einstieg: Rekonstruieren
- 4.3 Erweitern: Bestimmen eines orientierten Flächeninhalts
- 4.4 Vertiefen: Kumulieren
- 4.5 Hauptsatz der Differentialund Integralrechnung (HDI)
- 4.6 Anhang

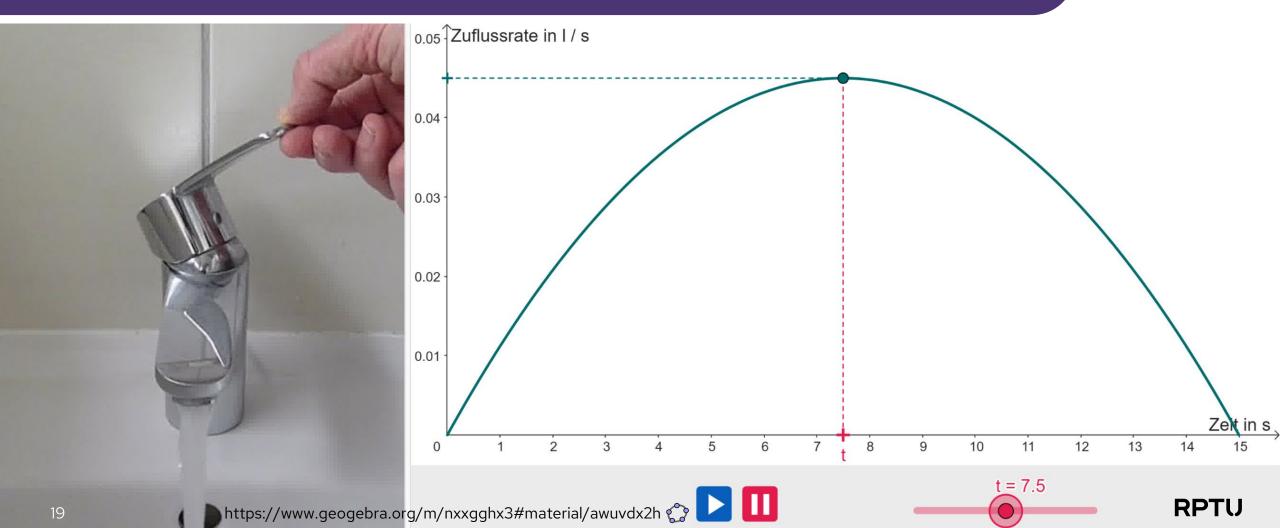
mategnu.de RPTU

Verständnisanker: Wanne

Verständnisanker

Füllmenge einer Wanne mit bekannter Zu- und Abflussgeschwindigkeit.

Frage: Wie kann man den Gesamteffekt aus den Änderungsraten rekonstruieren, wenn der Zufluss bzw. Abfluss **nicht linear** ist?

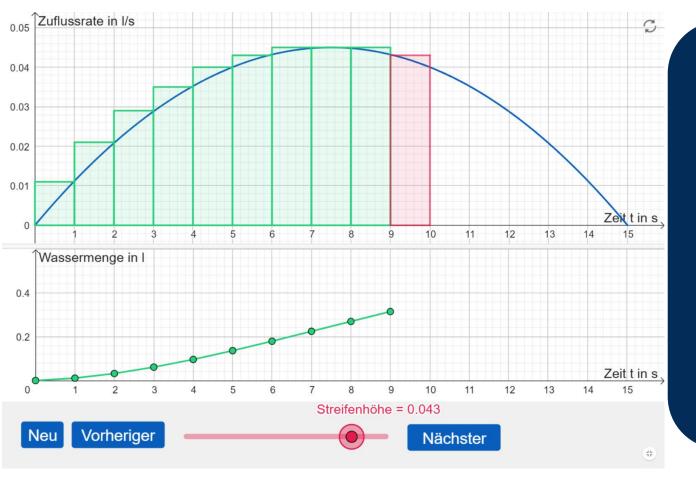


Grundvorstellung: Integrieren als Kumulieren

Verständnisanker

Füllmenge einer Wanne mit bekannter Zu- und Abflussgeschwindigkeit.

Wie kann man den Gesamteffekt aus den Änderungsraten rekonstruieren, wenn der Zufluss bzw. Abfluss **nicht linear** ist?



Idee: Analytische Annäherung

- Die Zuflussrate ist bei genügend kleinen Zeitintervallen nahezu konstant.
- Wenn man das Zeitintervall in n kleine zueinander gleichgroße Teilintervalle zerlegt, kann man vorgehen, wie in der Abbildung dargestellt.
- Der Gesamteffekt ist also eine Summe von Produkten aus der Teilintervall-Breite und dem (gewählten) Funktionswert der Zuflussrate im Teilintervall.

Ober- und Untersumme

Definition für Schülerinnen und Schüler

Definition: Ober- und Untersumme

Die Funktion f sei im abgeschlossenen Intervall [a; b] definiert und beschränkt.

Für eine Zerlegung des Intervalls [a; b] in $n \in \mathbb{N}$ gleichlange Teilintervalle der Länge $\frac{b-a}{a}$ sind $m_1, ..., m_n$ die **minimalen Funktionswerte** \star und M_1, \dots, M_n die maximalen Funktionswerte* von f im Teilintervall 1, ... bzw. n.

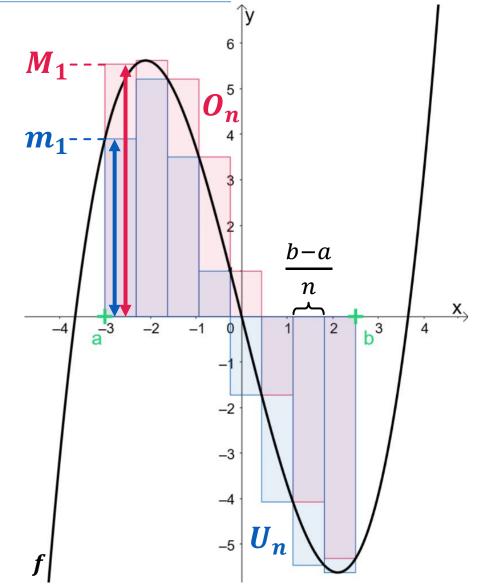
Dann heißen

$$U_n = m_1 \cdot \frac{b-a}{n} + \dots + m_n \cdot \frac{b-a}{n}$$

die **Untersumme** und

$$O_n = M_1 \cdot \frac{b-a}{n} + \dots + M_n \cdot \frac{b-a}{n}$$

die Obersumme von f zu dieser Zerlegung.



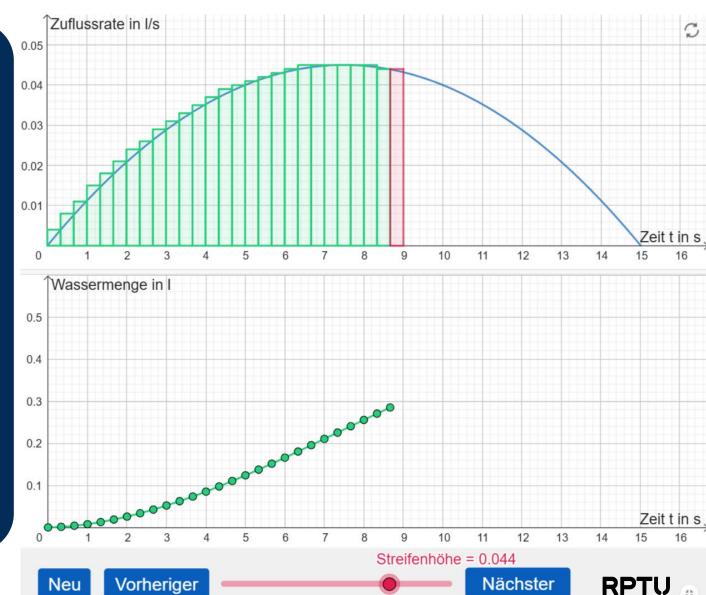
Grundvorstellung: Integrieren als Kumulieren

Verständnisanker

Füllmenge einer Wanne mit bekannter Zu- und Abflussgeschwindigkeit.

Erkenntnis: Nichtlinearer Zufluss

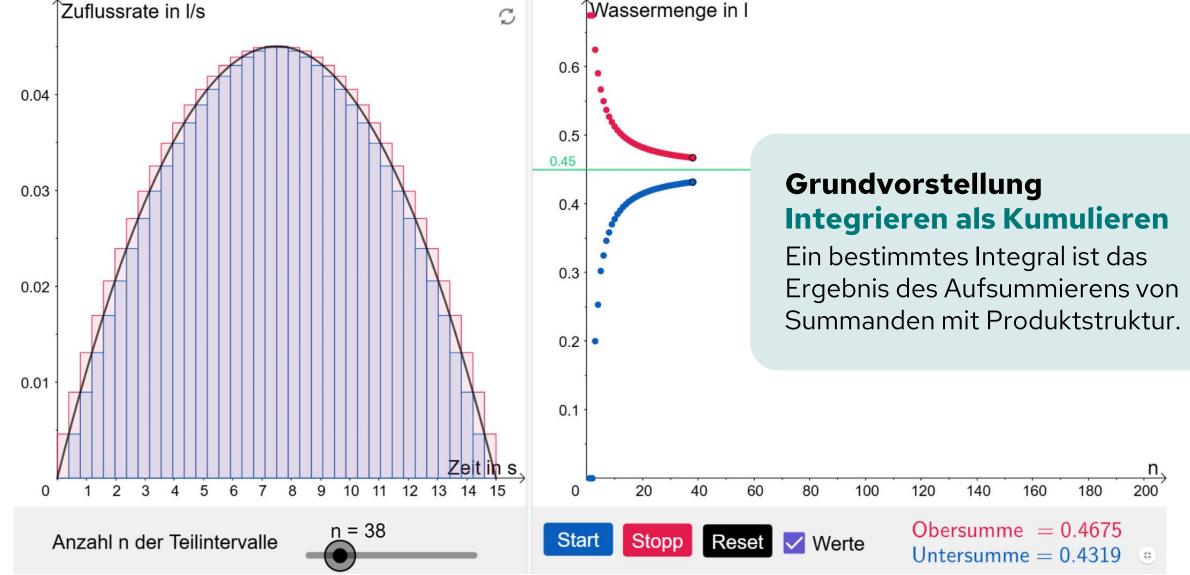
- Zur Rekonstruktion der Wassermenge zu einem beliebigen Zeitpunkt t sind die Zuwächse über alle Teilintervalle zu summieren, in die das Intervall [0; t] zerlegt wurde.
- Geometrisch gedeutet, ist der rekonstruierte Wert V(t) eine Summe aus kleinen orientierten Rechteckinhalten.
- Diese unterscheidet sich bei genügend kleiner Streifenbreite beliebig wenig vom *orientierten* Inhalt der Fläche unter dem Graph von V'.



Grundvorstellung: Integrieren als Kumulieren

Verständnisanker

Füllmenge einer Wanne mit bekannter Zu- und Abflussgeschwindigkeit.



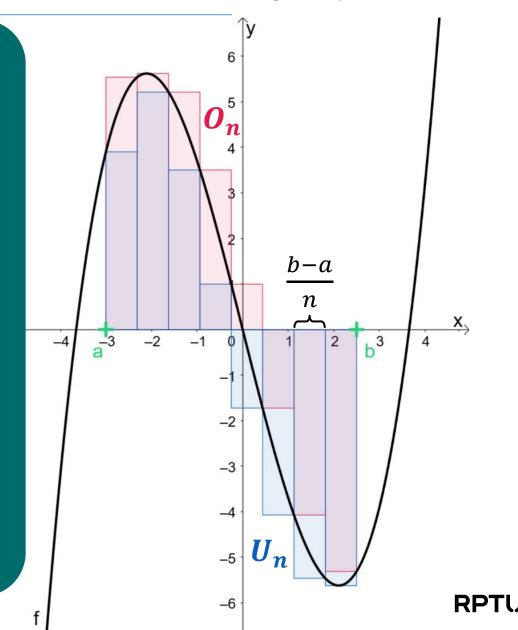
Bestimmtes Integral und Integrierbarkeit Definition für Schülerinnen und Schüler

Definition: Bestimmtes Integral & Integrierbarkeit Wenn

- eine Funktion f im abgeschlossenen Intervall [a; b]definiert und beschränkt ist,
- $\boldsymbol{U_n}$ die **Untersumme** und $\boldsymbol{O_n}$ die **Obersumme** von f für Zerlegungen des Intervalls [a; b] in $n \in \mathbb{N}$ gleichlange Teilintervalle der Länge $\frac{b-a}{n}$ sind und
- $\lim_{n\to\infty}U_n=\lim_{n\to\infty}O_n$,

dann heißt

- die Zahl $\lim_{n\to\infty} U_n = \int_a^b f(x) dx = \lim_{n\to\infty} O_n$ bestimmtes Integral von f über dem Intervall [a;b], und wird mit $\int_{a}^{b} f(x) dx$ bezeichnet,
- die Funktion f integrierbar über dem Intervall [a; b].



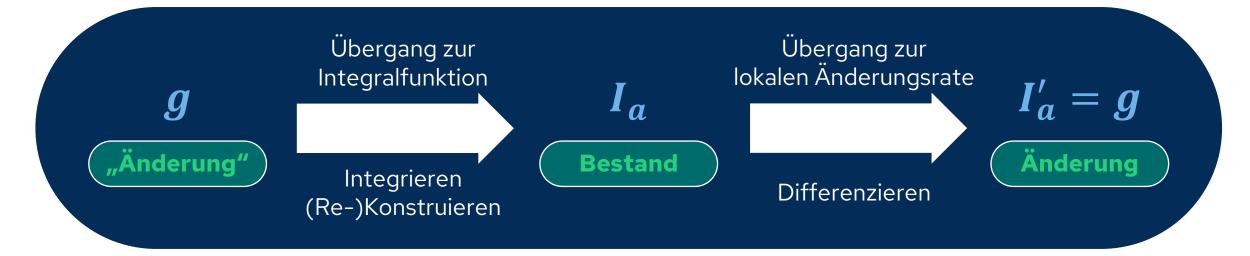
MaTeGnu

Modul 2: Integralrechnung verständnisorientiert unterrichten

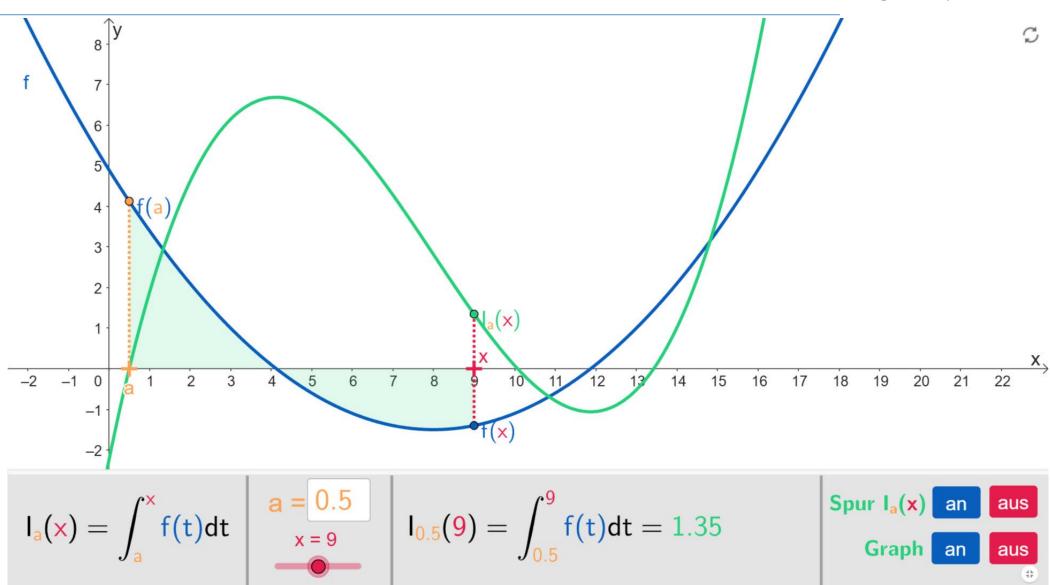
- 4.1 Grundvorstellungen zum Integral im Überblick
- 4.2 Einstieg: Rekonstruieren
- 4.3 Erweitern: Bestimmen eines orientierten Flächeninhalts
- 4.4 Vertiefen: Kumulieren
- **4.5** Hauptsatz der Differentialund Integralrechnung (HDI)
- 4.6 Anhang

mategnu.de RPTU

Gegenoperationen: Differenzieren und Integrieren



Integralfunktion



Integralfunktion Integrierbarkeit ↔ Stammfunktion

Definition (Integralfunktion)

Wenn eine Funktion f für alle $x \in [a; b]$ über [a; x] integrierbar ist, so heißt

$$I_a: x \mapsto I_a(x) = \int_a^x f(t)dt \text{ für } x \in [a; b]$$

Integralfunktion (zur Integrandenfunktion f mit der unteren Grenze a und der oberen Grenze x).

Für das triviale Integral gilt: $I_a(a) = \int_a^a f(t)dt = 0$

Bemerkungen

- Für die Integralfunktion $I_a(x) = \int_a^x f(t)dt$ gilt: Das bestimmte Integral $I_a(b) = \int_a^b f(t)dt$ ist der Funktionswert von $I_a(x)$ an der Stelle b.
- Es gilt: $\int_a^b f(x)dx \equiv \int_a^b f(t)dt$

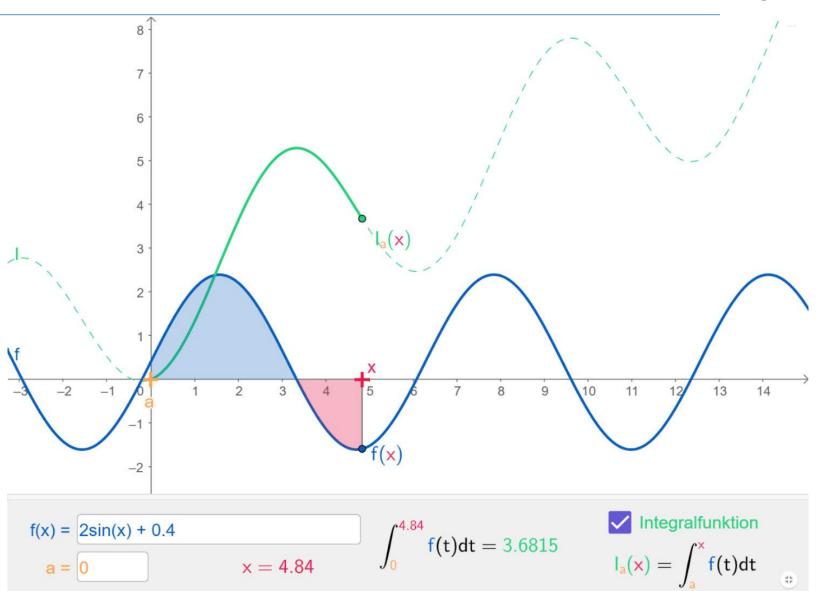
Definition (Stammfunktion)

- Eine im Definitionsbereich der Funktion f differenzierbare Funktion F mit F' = f heißt **Stammfunktion von** f.
- Zwei Stammfunktionen F_1 und F_2 zur selben Funktion f unterscheiden sich nur durch eine additive Konstante c, es gilt also: $F_2 = F_1 + c$

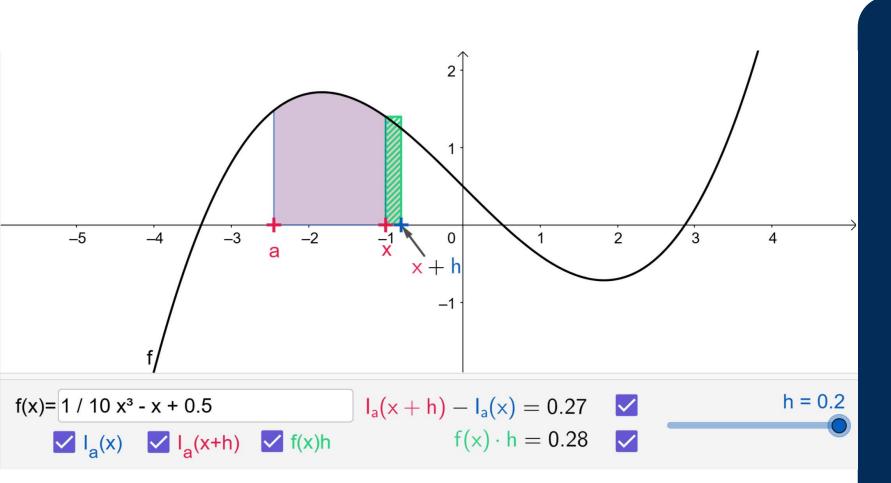
Bemerkungen

- Eine **Stammfunktion** besitzen und **Integrierbarkeit** sind zwei verschiedene Eigenschaften einer Funktion.
- Es gibt Funktionen, die eine Stammfunktion besitzen, aber nicht integrierbar sind und umgekehrt.

Integralfunktion



Auf dem Weg zum Hauptsatz der Differential- und Integralrechnung (HDI)



Anschauliche Überlegung

O. B. d. A. verlaufe der Graph von f im Intervall I oberhalb der x-Achse und es sei h > 0 $mit a \in I \text{ und } x + h \in I.$

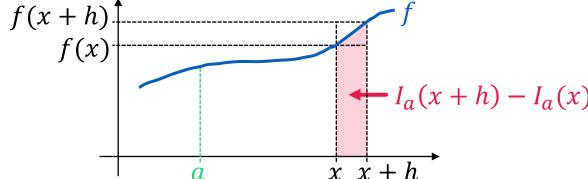
Die Differenz $I_a(x+h) - I_a(x)$ entspricht dem Inhalt des schraffierten Rechtecks.

Es hat die Breite *h* und näherungsweise die Höhe f(x), d. h.: $I_{a}(x+h) - I_{a}(x) \approx f(x) \cdot h$

Für $h \rightarrow 0$ konvergiert also $\frac{I_a(x+h)-I_a(x)}{1}$ gegen f(x).

Auf dem Weg zum Hauptsatz der Differential- und Integralrechnung (HDI)

Behauptung: Die Ableitung der Integralfunktion ist die Berandungsfunktion / Integrandenfunktion.



Begründung

Der absolute Zuwachs von I_a , das Flächenstück $I_a(x+h)-I_a(x)$, lässt sich durch Rechteckflächen abschätzen:

$$f(x) \cdot h \le I_a(x+h) - I_a(x) \le f(x+h) \cdot h$$

Für den relativen Zuwachs von I_a (mittlere Änderungsrate $\frac{I_a(x+h)-I_a(x)}{h}$) folgt:

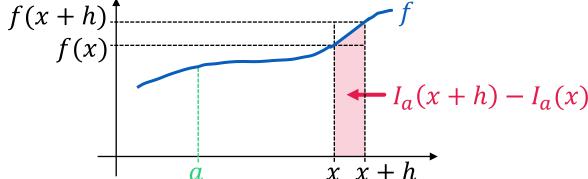
$$f(x) \le \frac{I_a(x+h) - I_a(x)}{h} \le f(x+h) \tag{*}$$

Die Integralfunktion I_a hat an der Stelle x die Eigenschaft $I'_a = f$, wenn f(x + h) für $h \to 0$ gegen f(x) strebt (d. h. f stetig in x ist). Dann folgt aus (*):

$$f(x) \le \lim_{h \to 0} \frac{I_a(x+h) - I_a(x)}{h} \le f(x) \quad \Rightarrow \quad I'_a(x) = f(x)$$

Auf dem Weg zum Hauptsatz der Differential- und Integralrechnung (HDI)

Behauptung: Die Ableitung der Integralfunktion ist die Berandungsfunktion / Integrandenfunktion.



Begründung

Der absolute Zuwachs von I_a , das Flächenstück $I_a(x+h)-I_a(x)$, lässt sich durch Rechteckflächen abschätzen:

$$\min(f(x), f(x+h)) \cdot h \le I_a(x+h) - I_a(x) \le \max(f(x), f(x+h)) \cdot h$$

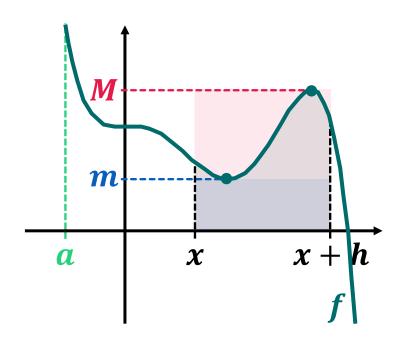
Für den relativen Zuwachs von I_a (mittlere Änderungsrate $\frac{I_a(x+h)-I_a(x)}{h}$) folgt:

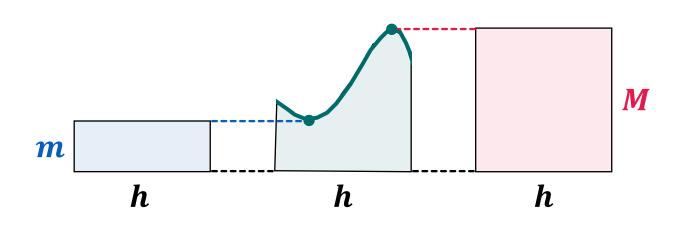
$$\min(f(x), f(x+h)) \le \frac{I_a(x+h) - I_a(x)}{h} \le \max(f(x), f(x+h)) \tag{*}$$

Die Integralfunktion I_a hat an der Stelle x die Eigenschaft $I'_a = f$, wenn f(x + h) für $h \to 0$ gegen f(x) strebt (d. h. f stetig in x ist). Dann folgt aus (*):

$$f(x) \le \lim_{h \to 0} \frac{I_a(x+h) - I_a(x)}{h} \le f(x) \quad \Rightarrow \quad I'_a(x) = f(x)$$

Auf dem Weg zum Hauptsatz der Differential- und Integralrechnung (HDI)





$$m := \text{Kleinster Funktionswert}$$

von f im Intervall $[x; x + h]$

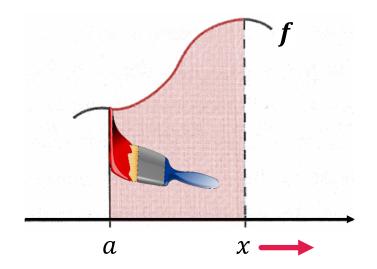
$$m \cdot h \le I_a(x+h) - I_a(x) \le M \cdot h$$

M := Größter Funktionswertvon f im Intervall [x; x + h]

Hauptsatz der Differentialund Integralrechnung (HDI)

Vorstellung

Wenn man die von f berandete Fläche mit Farbe streicht und dabei gleichmäßig von a nach rechts läuft, dann ist der Verbrauch an Farbe proportional zum Funktionswert von f an der Stelle, an der man sich gerade befindet.



1. Hauptsatz der Differentialund Integralrechnung (HDI 1)

Ist $f: I \to \mathbb{R}$ eine auf einem Intervall I **stetige** Funktion und $a \in I$, dann ist die Integralfunktion I_a auf I differenzierbar und sie ist eine Stammfunktion von f, d.h. es gilt:

$$I_a'(x) = f(x)$$

Kurz: Die Integralfunktion ist eine Stammfunktion der Integrandenfunktion (Berandungsfunktion).

Hauptsatz der Differentialund Integralrechnung (HDI)

Bemerkungen

- HDI1kann nur durchschaut werden, wenn Stetigkeit,
 Differenzierbarkeit und Integrierbarkeit inhaltlich verstanden wurden.
- Schulische Bedeutung des HDI:
 - (1) Der HDI zeigt einen Zusammenhang zwischen Differenzieren und Integrieren (HDI 1).
 - (2) Der HDI stellt ein Instrument zur Berechnung von Integralen zur Verfügung (HDI 2).

2. Hauptsatz der Differentialund Integralrechnung (HDI 2)

Sei $f: I \to \mathbb{R}$ eine auf einem Intervall I stetige Funktion und F eine Stammfunktion von f.

Dann gilt für alle $a, b \in I$:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Bemerkung: HDI 2 kann aus HDI 1 gefolgert werden. Nach HDI 1 gilt $I_a'(x) = f(x)$, die Integralfunktion ist bei stetiger Integrandenfunktion f eine Stammfunktion von f. $I_a(x)$ unterscheidet sich von einer beliebigen Stammfunktion F von f nur durch eine additive Konstante c, d. h. $F(x) = I_a(x) + c$ für alle $x \in I$.

Einsetzen von a und b ergibt:

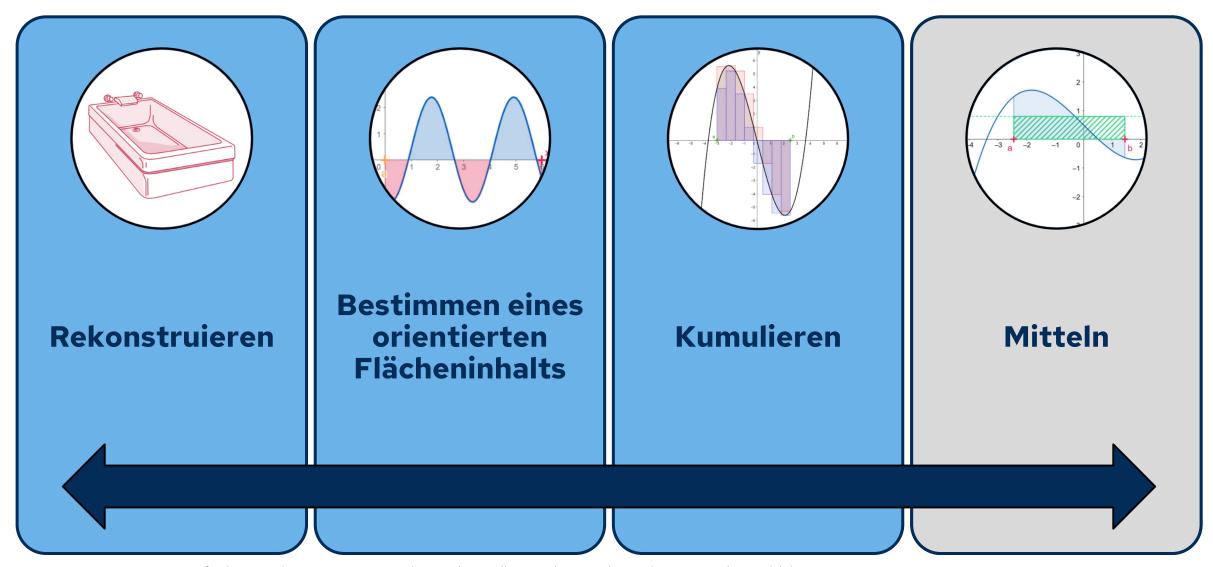
(I)
$$F(a) = I_a(a) + c = c$$

(II)
$$F(b) = I_a(b) + c \stackrel{\text{(I)}}{=} I_a(b) + F(a)$$

Daraus folgt:

$$\int_{a}^{b} f(x)dx = I_{a}(b) \stackrel{\text{(II)}}{=} F(b) - F(a)$$

Grundvorstellungen zum Integralbegriff



Kontakt

Prof. Dr. Jürgen Roth

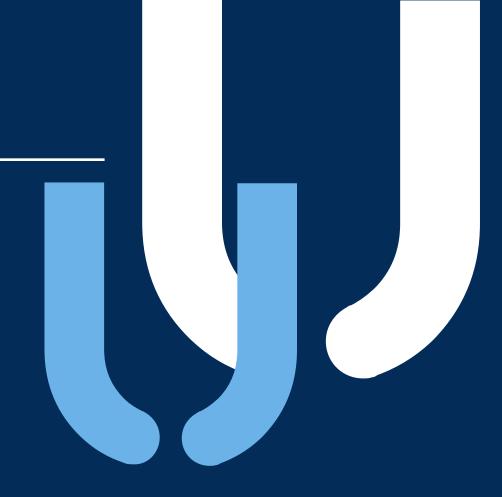
RPTU

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Didaktik der Mathematik (Sekundarstufen) Fortstraße 7, 76829 Landau

j.roth@rptu.de

juergen-roth.de mategnu.de



MaTeGnu

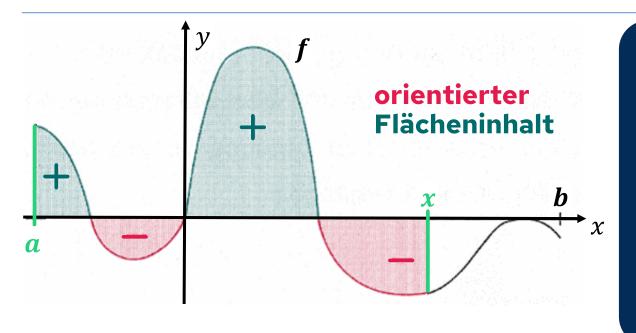
Modul 2: Integralrechnung verständnisorientiert unterrichten

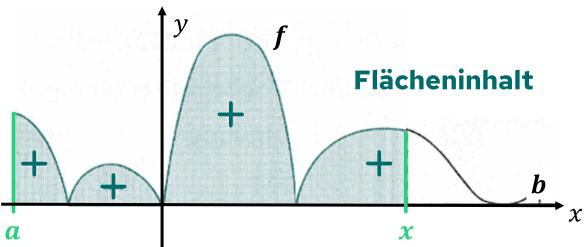
- 4.1 Grundvorstellungen zum Integral im Überblick
- 4.2 Einstieg: Rekonstruieren
- 4.3 Erweitern: Bestimmen eines orientierten Flächeninhalts
- 4.4 Vertiefen: Kumulieren
- 4.5 Hauptsatz der Differentialund Integralrechnung (HDI)

4.6 Anhang

mategnu.de RPTU

Grundvorstellung: Integrieren als Bestimmen eines orientierten Flächeninhalts





Orientierter Flächeninhalt ↔ Flächeninhalt

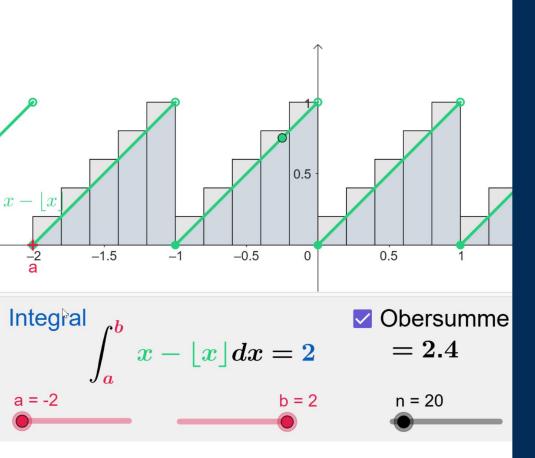
- Der **orientierte Flächeninhalt** der im Intervall [a; x] vom Graph von f und der x-Achse eingeschlossenen Fläche beträgt $\int_a^x f(t)dt$.
- Der **Flächeninhalt** der im Intervall [a; x] vom Graph der Funktion f und der x-Achse eingeschlossenen Fläche beträgt $\int_a^x |f(t)| dt$.

Satz (Integral-Additivität)

Es sei $c \in [a; b]$. Wenn die folgenden drei Integrale existieren, dann gilt:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Ober-/Untersumme ↔ Supremum/Infimum ^R τυ



Bemerkung

- Für die Integrierbarkeit reicht als Voraussetzung, an die Funktion f, dass sie in einem abgeschlossenen Intervall [a; b] definiert und beschränkt ist.
- Dann kann es bei nicht-stetigen Funktionen aber vorkommen, dass f in [a; b] das Maximum (größter Funktionswert) und / oder Minimum (kleinster Funktionswert) nicht annimmt.
- Deswegen wird in der Definition der Ober- und Untersumme das **Supremum** (kleinste obere Schranke für die Funktionswerte) bzw. das **Infimum** (größte untere Schranke für die Funktionswerte) genutzt.
- Da Funktionen, die in einem Intervall [a; b] stetig oder monoton sind, dort ihr Maximum und Minimum auch annehmen, kann man für diese Funktionen das Maximum bzw. Minimum nutzen.
- Zur Vereinfachung wurden für Lernende in der Ober- und Untersummendefinition Maxima bzw. Minima verwendet.

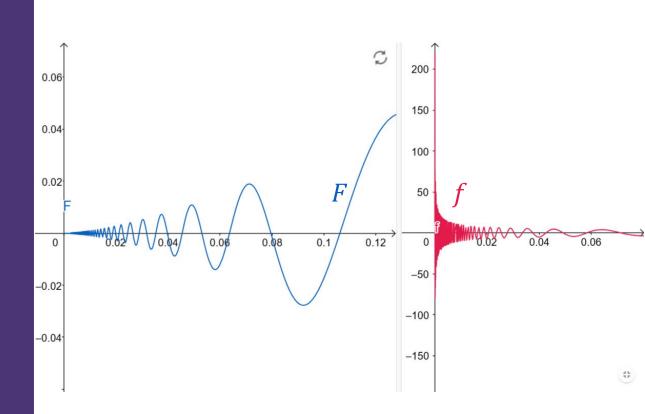
Integrierbarkeit und Stammfunktion

Beispiel: Stammfunktion → **Integrierbarkeit?**

$$F(x) = \begin{cases} x \cdot \sqrt{x} \cdot \sin\left(\frac{1}{x}\right) & \text{für } x > 0 \\ 0 & \text{für } x = 0 \end{cases}$$

$$f(x) = \begin{cases} \frac{3}{2} \cdot \sqrt{x} \cdot \sin\left(\frac{1}{x}\right) - \frac{1}{\sqrt{x}} \cdot \cos\left(\frac{1}{x}\right) & \text{für } x > 0 \\ 0 & \text{für } x = 0 \end{cases}$$

- Für die Funktionen F und f gilt: F' = f
- **F** ist also eine **Stammfunktion von f**.
- Da die Funktion **f** in der Nähe von 0 nicht beschränkt ist, ist **f nicht integrierbar**.
- Es gibt also Funktionen, die eine **Stammfunk**tion besitzen, aber nicht integrierbar sind!



Integrierbarkeit und Stammfunktion

Beispiel: Integrierbarkeit → **Stammfunktion?**

- Die Funktion $f(x) = \begin{cases} 0 & \text{für } x < 0 \\ 1 & \text{für } x \ge 0 \end{cases}$ ist **integrierbar**.
- Das Integral von f über einem Intervall [a; b] ist:

$$\int_{a}^{b} f(x)dx = \begin{cases} 0 & \text{für } a \le b \le 0 \\ b & \text{für } a \le 0 \le b \\ b - a & \text{für } 0 \le a \le b \end{cases}$$

■ Die Funktion f besitzt auf ganz \mathbb{R} keine Stammfunktion, denn die Funktion F die als Stammfunktion in Frage käme, ist an der Stelle 0 nicht differenzierbar:

$$F(x) = \begin{cases} 0 & \text{für } x < 0 \\ x & \text{für } x \ge 0 \end{cases}$$

Es gibt also Funktionen, die integrierbar sind, aber keine Stammfunktion besitzen!

