

Jürgen Roth

Mit Funktionen denken und arbeiten

Wie digitale Lernumgebungen dabei unterstützen können

Mit Funktionen denken und arbeiten

Wie digitale Lernumgebungen dabei unterstützen können

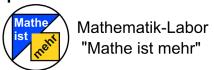
- 1 Grundvorstellungen zu Funktionen
- 2 Typische Schülerfehler beim Umgang mit Funktionen
- 3 Digitale Lernumgebungen
- 4 Experimentieren mit gegenständlichen Materialien und Simulationen
- Digitale Lernumgebungen zu funktionalen Zusammenhängen

Mathematik lehren 226 Mit Funktionen denken und arbeiten

https://juergen-roth.de/publikationen/

https://roth.tel/funktionen/

https://mathe-labor.de

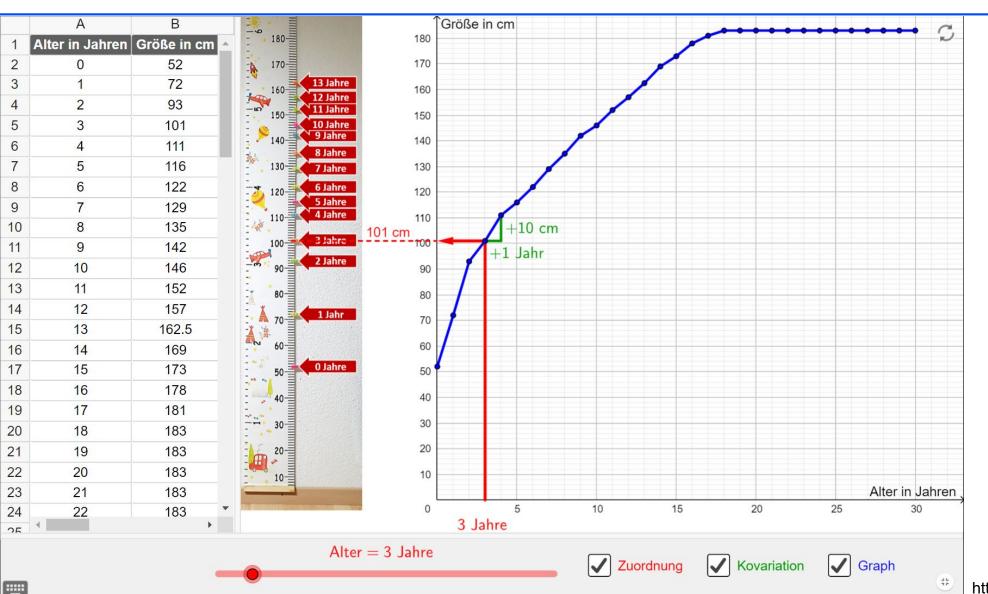


Mit Funktionen denken und arbeiten

Wie digitale Lernumgebungen dabei unterstützen können

- 1 Grundvorstellungen zu Funktionen
- 2 Typische Schülerfehler beim Umgang mit Funktionen
- 3 Digitale Lernumgebungen
- 4 Experimentieren mit gegenständlichen Materialien und Simulationen
- 5 Digitale Lernumgebungen zu funktionalen Zusammenhängen

Zusammenhang: Alter → Körpergröße



Roth, J. & Lichti, M. (2021). **Funktionales Denken** entwickeln und fördern. Mathematik lehren, 226, 2-9.

Grundvorstellung Zuordnung

Grundvorstellung Kovariation

Grundvorstellung Funktion als Ganzes

https://www.geogebra.org/m/vxj3b49w

Grundvorstellungen zu Funktionen

Roth, J. (2014): Experimentieren mit realen Objekten, Videos & Simulationen – Ein schülerzentrierter Zugang zum Funktionsbegriff. MU 60(6), S. 37-43

Zuordnung

 Funktionen beschreiben bzw. stiften Zusammenhänge zwischen Größen: Einer Größe wird genau eine zweite Größe zugeordnet.

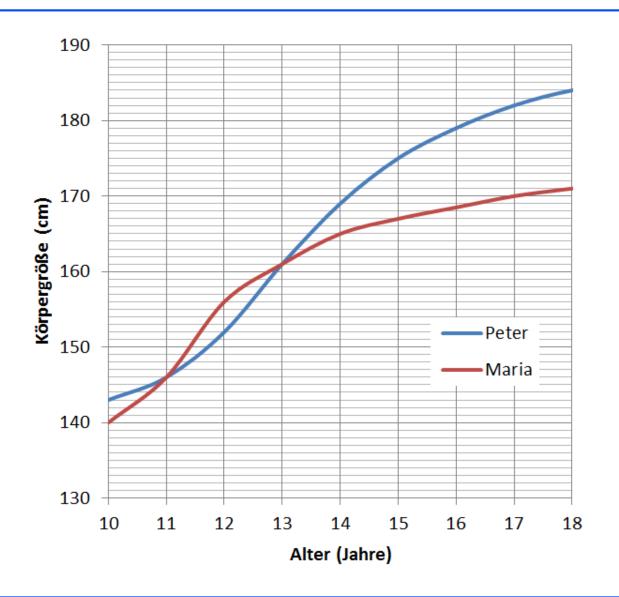
■ Änderungsverhalten / Kovariation

 Durch Funktionen wird deutlich, wie sich die Änderung einer Größe auf die Änderung einer von ihr abhängigen Größe auswirkt.

Funktion als Ganzes

Mit Funktionen sieht man einen
 Zusammenhang als etwas Ganzes.
 Man betrachtet nicht einzelne sondern die Menge aller Wertepaare.

Grundvorstellungen bei Funktionsgraphen



Zuordnung

Wie groß ist Peter mit 15 Jahren?

Kovariation

Wer wächst zwischen dem 12. und 13. Geburtstag schneller, Marie oder Peter?

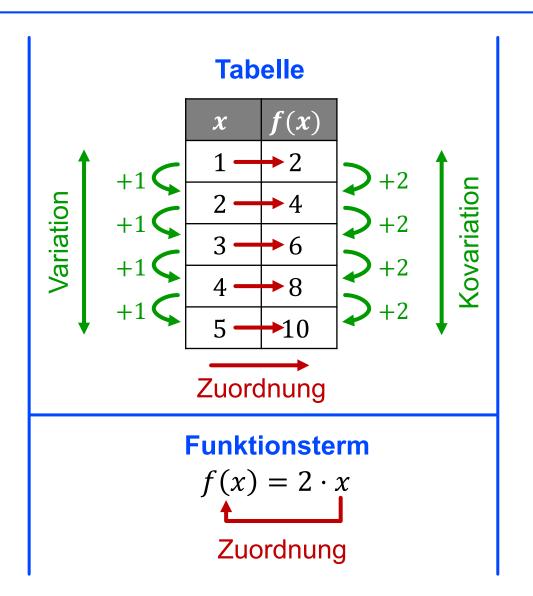
Funktion als Ganzes

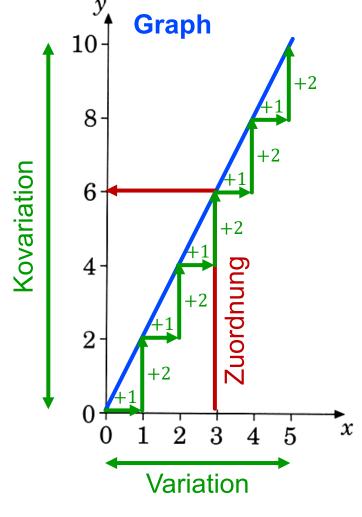
- (1) Gesamtverlauf erfassen
- (2) Verschiedene Graphen vergleichen
- (3) Abschnitte im selben Graph vergleichen

Grundvorstellungen und Repräsentationsformen

Grundvorstellungen zu Funktionen

- Zuordnung
- Änderungsverhalten / Kovariation
- Funktion als Ganzes





Ziele beim Ausbilden von Grundvorstellungen

Sinnzusammenhänge herstellen

 Anknüpfen an bekannte Situationen oder Handlungsvorstellungen Prototypisches
Beispiel als
VerständnisAnker

Aufbau visueller Repräsentationen

Ermöglichen mentales Operieren

Fähigkeit zur Anwendung des Inhalts auf die Wirklichkeit

- Erkennen der Struktur in Sachzusammenhängen
- Modellieren des Phänomens mit Hilfe der mathematischen Struktur

Roth, J. & Siller S. (2016). Bestand und Änderung – Grundvorstellungen entwickeln und nutzen. Mathematik lehren 199, S. 2-9

Mit Funktionen denken und arbeiten

Wie digitale Lernumgebungen dabei unterstützen können

- 1 Grundvorstellungen zu Funktionen
- 2 Typische Schülerfehler beim Umgang mit Funktionen
- 3 Digitale Lernumgebungen
- 4 Experimentieren mit gegenständlichen Materialien und Simulationen
- 5 Digitale Lernumgebungen zu funktionalen Zusammenhängen

Einzeichnen und Ablesen von Punkten

Konstruktion

- Eindeutigkeit missachtet
 - Vgl. GV Zuordnung
- □ Trugschluss: Eindeutigkeit → Injektivität
 - Annahme:
 Da jedem x genau ein y zugeordnet wird, darf auch jedes y nur einmal vorkommen. (Leinhardt et al. 1990)

Konstruktion & Ablesen

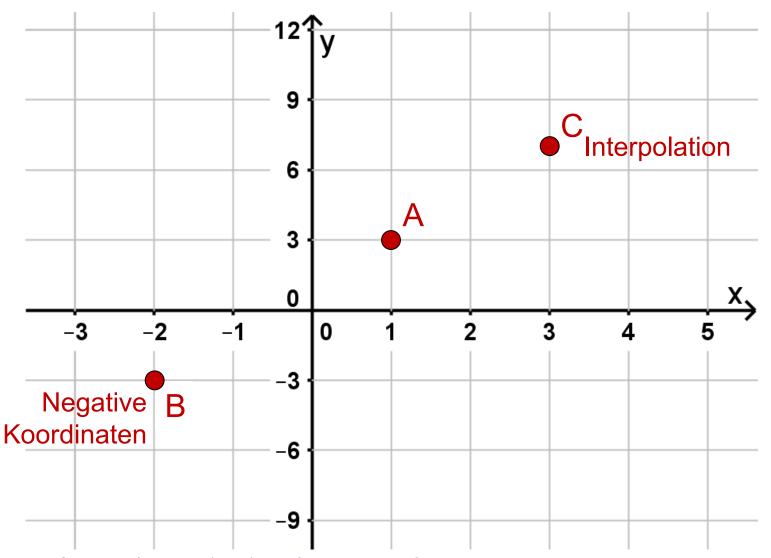
- > x- und y-Koordinate werden vertauscht
 - Vgl. GV Zuordnung

Konstruktion & Ablesen

- Probleme
 - mit negativen Koordinaten
 - bei der Interpolation
 - beim Ablesen des x-Werts zu einem y-Wert
 - beim Bestimmen von Steigungen
 - beim Vergleich von Steigungen in verschiedenen Abschnitten oder Graphen
- Annahme:
 Sichtbarer Graph zeigt gesamte Funktion
 (Probleme beim Treffen von Vorhersagen)

Hofmann, R. & Roth, J. (2021). Lernfortschritte identifizieren - Typische Fehler im Umgang mit Funktionen. Mathematik lehren, 226, 15-19.

Einzeichnen und Ablesen von Punkten

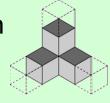


Hofmann, R. & Roth, J. (2021). Lernfortschritte identifizieren – Typische Fehler im Umgang mit Funktionen. Mathematik lehren, 226, 15-19.

Herstellen eines Bezugs zur Situation

Konstruktion

- Unsicherheit,
 - welche für die Situation markanten
 Punkte sich für die Konstruktion des
 Graphen nutzen lassen
 - ob das Verbinden von Punkten in der Situation erlaubt bzw. sinnvoll ist



- wie Punkte ggf. verbunden werden müssen (Typ des funktionalen Zusammenhangs) – oft wird fälschlich linear oder stückweise linear verbunden
- □ Keine Änderung ↔ Funktionswert 0

Interpretation

- Unsicherheit, wie
 - Punkte bzgl. der Situation
 - Achsenabschnitte
 - Schnittpunkte von Graphen
 - konstante Graphen-Abschnitte(Graph parallel zur x-Achse)
 - Linie durch Punkte (Funktionsgraph; Interpolations- bzw. Ausgleichsgerade; Visualisierung von Veränderungen)
 - Steigung des Graphen insgesamt / in verschiedenen Abschnitten
 - verschiedene Graphen zu einer Situation im Vergleich

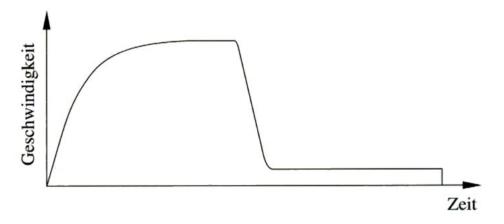
zu interpretieren sind

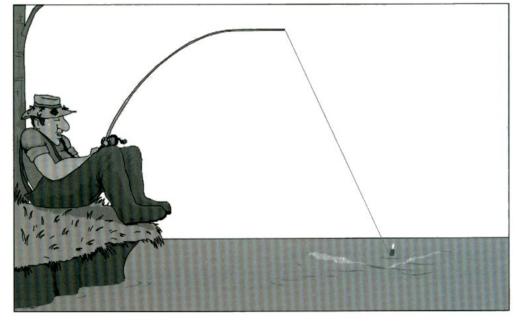
Hofmann, R. & Roth, J. (2021). Lernfortschritte identifizieren – Typische Fehler im Umgang mit Funktionen. Mathematik lehren, 226, 15-19.

"Graph als Bild"-Fehler

Konstruktion & Interpretation

- Ein Graph wird nicht als Darstellung eines funktionalen Zusammenhangs sondern als Abbild (Foto) der Realität interpretiert bzw. konstruiert.
- Tritt häufig auf, wenn die Funktion einen
 Zusammenhang zwischen zurückgelegtem
 Weg oder Geschwindigkeit und Zeit darstellt.
- Funktionsgraph wird dann oft als zurückgelegte Strecke bzw.
 Streckenverlauf interpretiert.

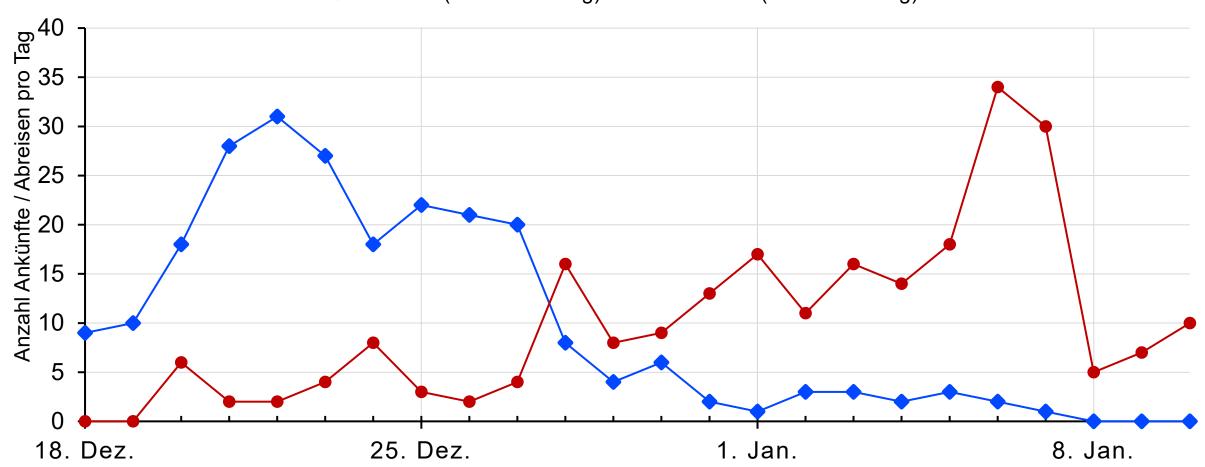




Hofmann, R. & Roth, J. (2021). Lernfortschritte identifizieren - Typische Fehler im Umgang mit Funktionen. Mathematik lehren, 226, 15-19.

Herstellen eines Bezugs zur Situation Wann waren die meisten Gäste im Hotel?

Ankünfte und Abreisen im Alpenhotel



Roth, J. & Siller, H.-S. (2016). Bestand und Änderung – Grundvorstellungen entwickeln und nutzen. Mathematik lehren, 199, S. 2-9.

Verwechslung von Bestand und Änderung

Clement (1985). Misconceptions in graphing. Proceedings of the 9th PME, Noordwijkerhout, The Netherlands

Interpretation & gelegentlich Konstruktion

- Diese Verwechslung tritt auf, wenn nach der Steigung (also der Änderung)
 an einer bestimmten Stelle bzw. in einem bestimmten Bereich gefragt wird.
- Statt der Änderung wird dann häufig der Bestand (d.h. der y-Wert an dieser Stelle bzw. die y-Werte in diesem Bereich) fokussiert.
- Dieser Fehler tritt auf, wenn mehrere Graphen oder verschiedene Teilbereiche eines Graphen miteinander verglichen werden und beispielsweise nach der größeren Änderung gefragt wird.

■ Vergleich innerhalb eines Graphen

Innerhalb welchen Jahres wachsen die Jungen am stärksten?

■ Vergleich zwischen zwei Graphen

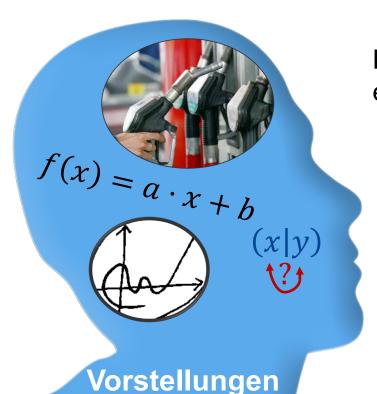
 Welche Jugendliche wachsen im Zeitraum zwischen 10 und 11 Jahren stärker – männliche oder weibliche?

McDermott et al. (1987). Student difficulties in connecting graphs and physics: Examples from kinematics. Am. J. Phys. 55(6), 503-513

Concept Image ← Concept Definition

Thompson, P. W. (1994). Students, Functions, and the Undergraduate Curriculum. In E. Dubinsky, A. H. Schoenfeld, & J. J. Kaput (Eds.), *Research in Collegiate Mathematics Education I* (pp. 21–44). Providence, RI: American Mathematical Society.

Concept Image



Durch
Erfahrungen
entstandene
mentale
Bilder die
mit dem
Konstrukt

verbunden

werden.

Definition des Konstrukts, die von der Person akzeptiert wurde.

Concept Definition

Eine Funktion
ist eine Zuordnung
zwischen einer
Definitionsmenge D
und einer (Ziel-)Menge
M, die jedem Element
aus D genau ein
Element aus M
zuordnet.

konventionelle Definition

Tall, D.O.; Vinner, S. (1981). Concept image and concept definition in mathematics, with special reference to limits and continuity. Educational Studies in Mathematics 12, 151-169

concept image ← **concept definition**

Concept image & concept definition

- ... existieren nebeneinander und sind oft miteinander vereinbar.
- ... sind nicht immer gleichzusetzen und können sich gegenseitig stören.

Graphen, die neu und ungewohnt erscheinen,

- passen nicht zu den mentalen Bildern und somit nicht ins concept image.
- werden oft nicht als Funktionsgraphen angesehen, obwohl sie definitionsgemäß Funktionen darstellen und die Definition einer Funktion (concept definition) durchaus verinnerlicht wurde.

Konstruktion

Häufige Annahme von Lernenden:

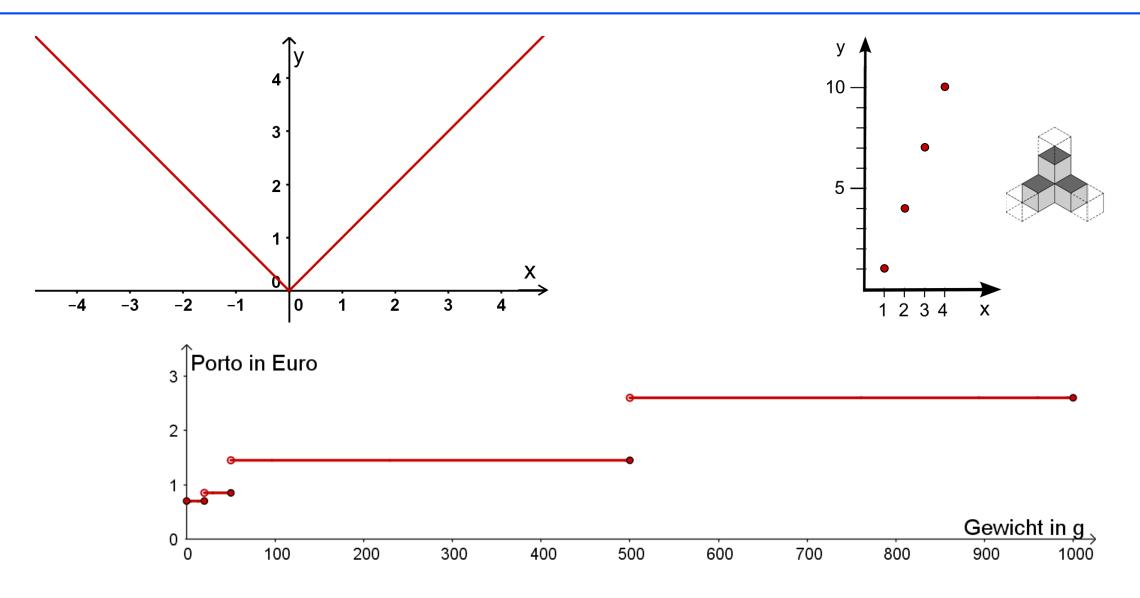
Graph beginnt immer im Ursprung

Interpretation & Konstruktion

Häufige Annahmen von Lernenden:

- Keine "richtigen" Funktionen sind (wenn noch nicht explizit im Unterricht thematisiert):
 - Abschnittsweise definierte Funktionen
 - Unstetige und diskrete Funktionen
 - Konstante Funktionen

concept image ↔ **concept definition**



Mit Funktionen denken und arbeiten

Wie digitale Lernumgebungen dabei unterstützen können

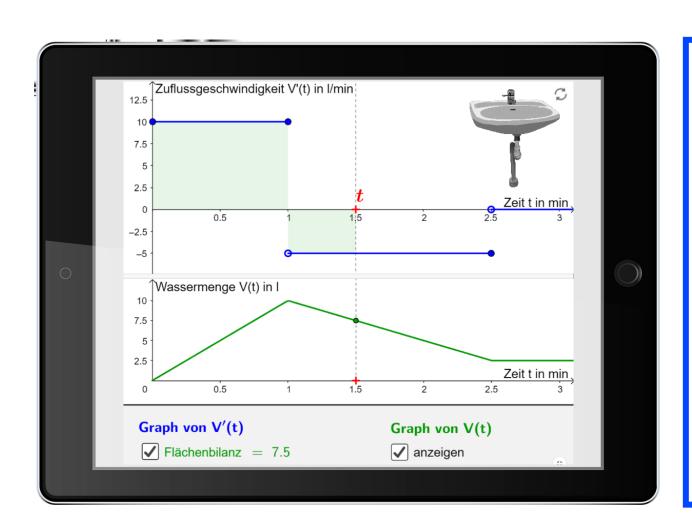
- 1 Grundvorstellungen zu Funktionen
- 2 Typische Schülerfehler beim Umgang mit Funktionen
- 3 Digitale Lernumgebungen
- 4 Experimentieren mit gegenständlichen Materialien und Simulationen
- 5 Digitale Lernumgebungen zu funktionalen Zusammenhängen

Lernumgebungen...

- bilden den Rahmen für das selbstständige Arbeiten von Lerngruppen oder individuell Lernenden,
- regen Lernende zu Prozessen aktiver
 Wissenskonstruktion an,
- organisieren und regulieren den Lernprozess über ein Netzwerk von Aufgaben, die
 - durch Leitgedanken inhaltlich aufeinander bezogen sind,
 - hinreichend offen sind, um differenzierend zu wirken,
 - bzgl. des zu erarbeitenden Inhalts sowie der intendierten Lernprozesse sinnvoll strukturiert sind, sowie
 - Aufforderungen zur Dokumentation der Vorgehensweisen & Ergebnisse enthalten,

- umfassen geeignete Medien und Materialien für die aktive und vielfältige Auseinandersetzung mit einem inhaltlichen Phänomen,
- fordern zur Kommunikation und Reflexion über das Erarbeitete heraus,
- bieten bei Bedarf individuell abrufbare Hilfestellungen sowie die Möglichkeit der Ergebniskontrolle und
- Sollten von einem unterrichtlichen
 Gesamtsetting gerahmt werden, in dem die
 Lernenden durch eine Lehrperson auf die
 Arbeit mit der Lernumgebung vorbereitet,
 wieder daraus abgeholt und insbesondere
 beim Systematisieren ihrer gewonnenen
 Erkenntnisse unterstützt werden.

Roth, J. (im Druck). Digitale Lernumgebungen. In F. Schacht et al. (Hrsg.). Digitales Lehren und Lernen von Mathematik in der Schule. Wiesbaden: Springer



Digitale Lernumgebung

- Digitale Lernumgebungen bilden eine Teilmenge der Lernumgebungen.
- Eine digitale Lernumgebung konstituiert sich bereits dann, wenn eine Lernumgebung durch
 - von Lernenden interaktiv nutzbare digitale Elemente (z. B. Applets),
 - die einen wesentlichen Beitrag zur Lernaktivität leisten,

digital angereichert wurde.

Roth, J. (im Druck). Digitale Lernumgebungen. In F. Schacht et al. (Hrsg.). Digitales Lehren und Lernen von Mathematik in der Schule. Wiesbaden: Springer

Mit Funktionen denken und arbeiten

Wie digitale Lernumgebungen dabei unterstützen können

- 1 Grundvorstellungen zu Funktionen
- 2 Typische Schülerfehler beim Umgang mit Funktionen
- 3 Digitale Lernumgebungen
- 4 Experimentieren mit gegenständlichen Materialien und Simulationen
- 5 Digitale Lernumgebungen zu funktionalen Zusammenhängen

Gegenständliche Materialien

Funktionale Zusammenhänge werden erlebbar

(Ludwig & Oldenburg 2007)

Lernen wird nachhaltiger

(Vom Hofe 2003)

Arbeitsweisen einprägsamer

(Vollrath 1978)

Zugriff auf Inhalte dauerhafter

(Barzel & Ganter 2010)

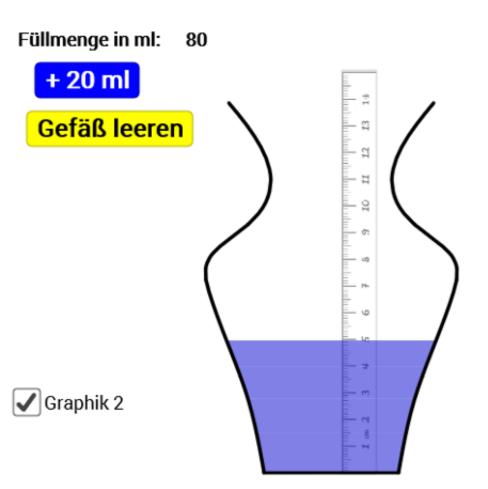
 Deutung graphisch/tabellarisch dargestellter Zusammenhänge

(Barzel & Ganter 2010)

Motivation

(Barzel 2010)

Simulationen



- Funktionen erkunden (Elschenbroich, 2011)
- Änderungsverhalten erleben (Vollrath & Roth, 2012)
- Systematische Variation (Roth, 2008)
- Multi-Repräsentations-System (Ballacheff & Kaput, 1997)
- Mittler zwischen Lernenden und mathematischem Phänomen (Danckwerts et al. 2000; Hoyles & Noss, 2003)
- Erleichterte Durchführung (Barzel 2010)

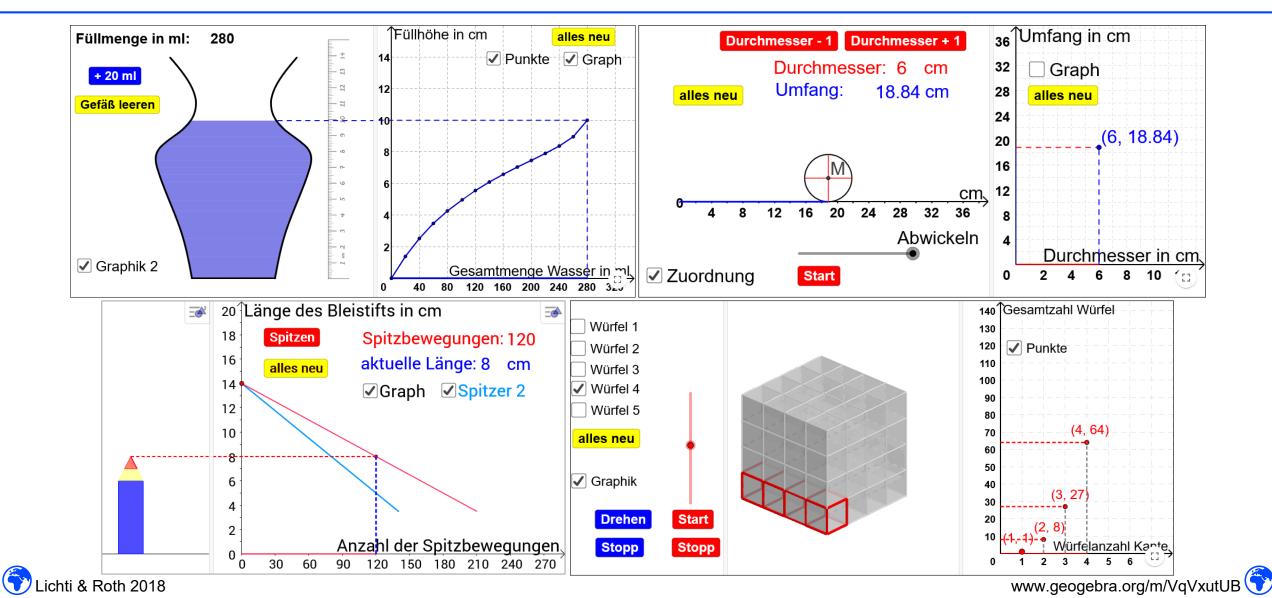
Gegenständliche Materialien → Simulationen

Auswahl der Situationen

- Umsetzbarkeit
- Vergleichbare Aktionen
- Medienvorteile nutzen
- Durchführbarkeit
- Verschiedene funktionale Zusammenhänge

Lichti, M. & Roth, J. (2018). How to Foster Functional Thinking in Learning Environments Using Computer-Based Simulations or Real Materials. *Journal for STEM Education Research*, 1, pp. 148-172. DOI: 10.1007/s41979-018-0007-1,

Die Simulationen



Aufgabengestaltung

Lichti & Roth (2018)

Arbeitsaufträge

- Ermittlung von Werten (Messen)
- Erstellen einer Wertetabelle
- □ Arbeiten mit Graphen

Material-Gruppe: Zeichnen

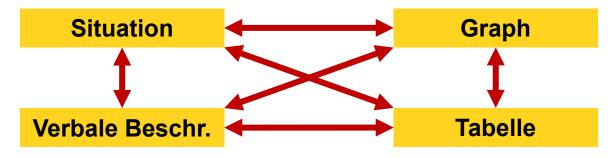
■ Simulation-Gruppe: Entstehung beobachten

Beide Gruppen: Zusätzlich zeichnen und

mit Graphen arbeiten

Interpolation, Anwendung & Transfer

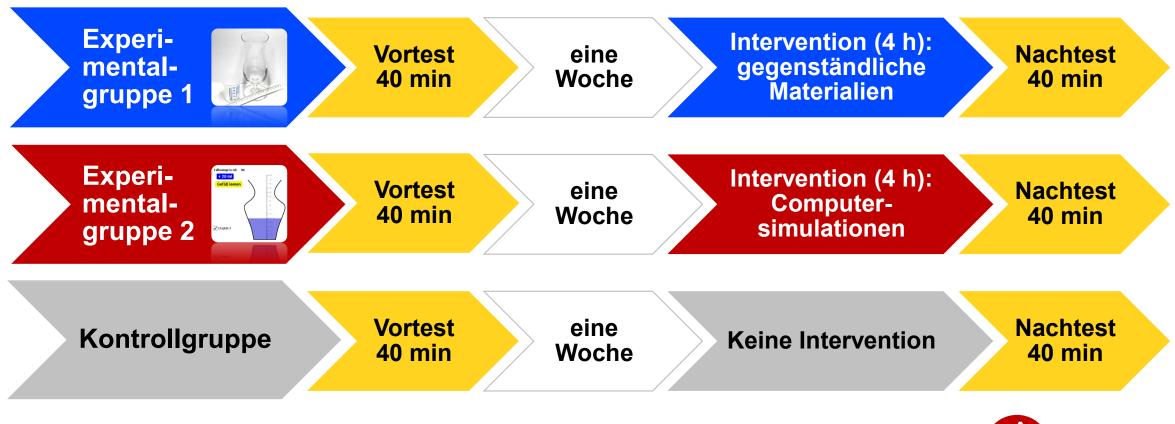
Repräsentationsformen



https://www.juergen-roth.de/projekte.html#5 → Lichti

Interventionsstudie

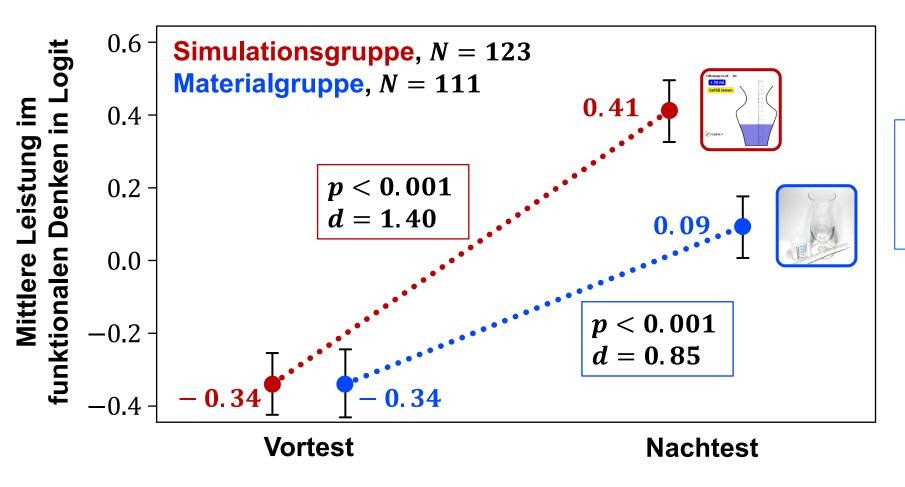
Lichti & Roth (2018)



- \triangleright Dreizehn 6. Klassen (N=282)

Lichti, M. & Roth, J. (2019). Functional thinking – A three-dimensional construct? Journal für Mathematik-Didaktik, 39, DOI 10.1007/s13138-019-00141-3, https://rdcu.be/bqRk8

Leistungszuwachs im funktionalen Denken



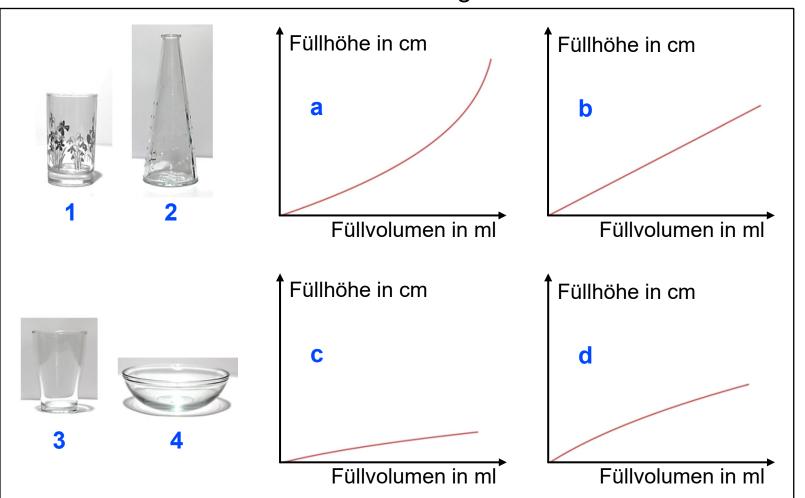
 $F(1, 25.820) = 8.856, p = 0.006, \eta_p^2 = 0.090$

Qualitative Inhaltsanalyse

Aufgaben aus Intervention und Post-Test mit offenen Antwortformaten

Gefäße füllen: Aufgabe

Hier siehst du verschiedene Gefäße und Füllgraphen. Ordne sie einander zu und begründe deine Wahl.



Kategorie	Beispiel
Form des Gefäßes	Das Glas wird breiter.
Verlauf des Graphen	Weil der Graph ziemlich flach ist.
Anstieg des Wassers	Erst steigt das Wasser langsamer, dann schneller.
Zustand	Der Graph ist steil. Die Schüssel ist flach.
Veränderung	Der Graph wird nach und nach steiler.

Gefäße füllen: Ergebnisse

Materialgruppe

Lernende argumentieren signifikant häufiger

- in mit der Form des Gefäßes $(\chi^2 = 14.79, df = 1, p < 0.001, V = 0.15)$
- □ mit Zuständen $(\chi^2 = 4.361, df = 1, p = 0.037^*, V = 0.08)$

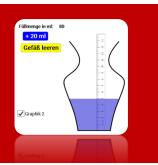
Simulationsgruppe

Lernende argumentieren signifikant häufiger

- mit dem Verlauf des Graphen $(\chi^2 = 6.62, df = 1, p = 0.01^*, V = 0.10)$
- \square mit Veränderung $(\chi^2 = 6.955, df = 1, p = 0.008^{**}, V = 0.11)$

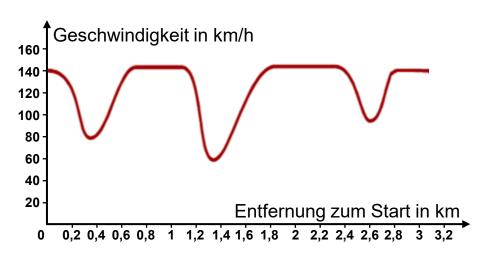
Material: Reale Situation und Zustand

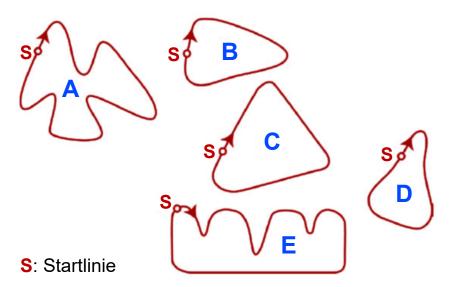
Simulation:
Graphische
Repräsentation
und Veränderung



Rennwagen: Aufgabe

Dieser Graph zeigt, wie sich die Geschwindigkeit eines Rennwagens während seiner zweiten Runde auf einer drei Kilometer langen, flachen Rennstrecke verändert.





Kategorie	Beispiel
Geschwindig- keit und Kurven	Ein Auto muss in Kurven langsamer werden.
Verschiedene Kurven	Es gibt drei Kurven: Zwei flache und eine steile.
Graph-als-Bild- Fehler	Weil die Bahn wie der Graph aussieht.
Falsche Inter- pretation der Rennstrecken	Die Rennstrecke [A] hat drei Kurven.

Rennwagen: Ergebnisse

Materialgruppe

- Schüler/innen können Wissen über Zusammenhang von Geschwindigkeit und Kurven signifikant häufiger **nicht** anwenden $(\chi^2 = 6.304, df = 1, p = 0.012^*, V = 0.21)$
- Graph-als-Bild-Fehler: 36%

Material: Graph-als-Bild-Fehler

Simulationsgruppe

- Graph-als-Bild-Fehler: 0%
 - ⇒ Können besser mit Graphen umgehen

Simulation:
Verknüpfung Graph
und reale Situation

Ergebnisse im Überblick

Quantitative Analyse

Entwicklung Funktionalen Denkens

Simulation > Material

Qualitative Analyse

- Argumentation mit Funktionsgraphen
- Argumentation mit realen Situation
- Argumentation mit Änderungen
- Argumentation mit Zuständen
- qualitative Betrachtung (Interpretation und/oder Zeichnen) eines Graphen
- Einzelne Wertepaare (Interpretation und/oder Zeichnen)

Simulation > Material

Simulation < Material

Simulation > Material

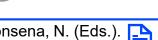
Simulation < Material

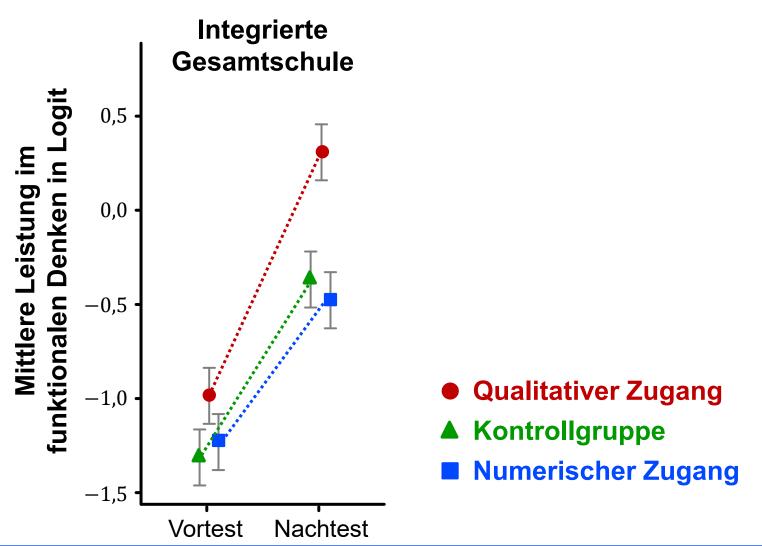
Simulation > Material

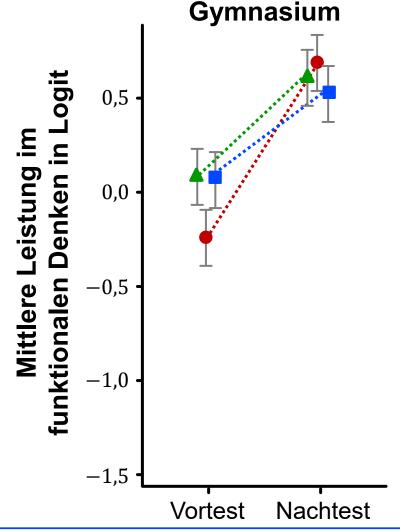
Simulation < Material

Kombination beider Zugänge

Digel, S. & Roth, J. (2021). Do qualitative experiments on functional relationships foster covariational thinking? In Inprasitha, M., Changsri, N., Boonsena, N. (Eds.). Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 218-226). Khon Kaen, Thailand: PME.

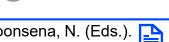


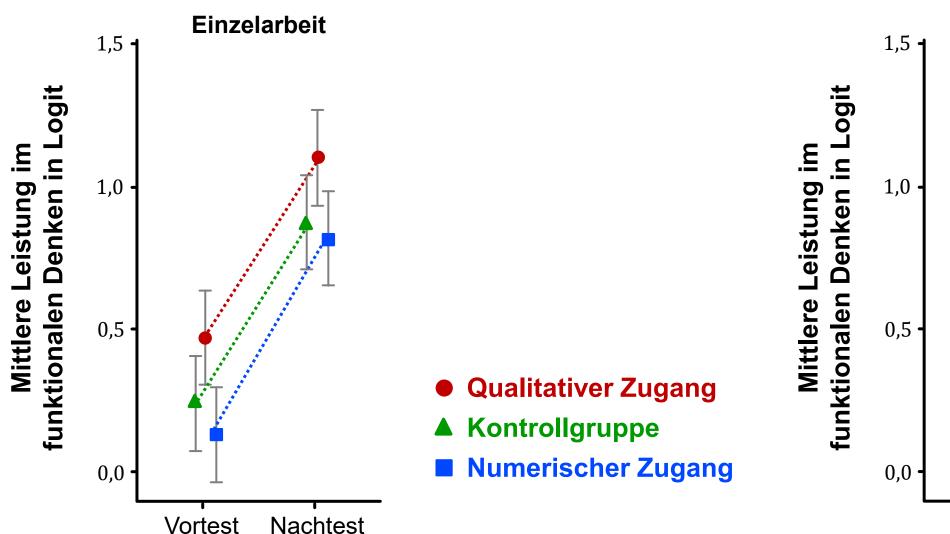


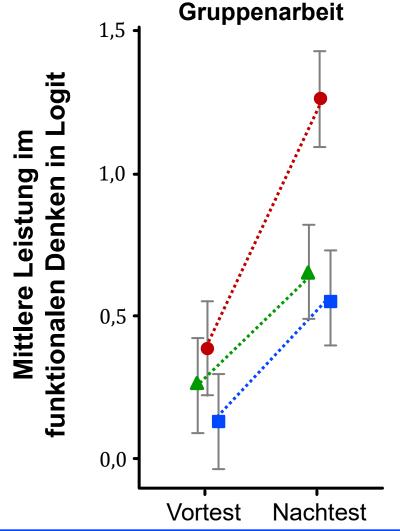


Fokus Änderungsverhalten: Qualitativer Zugang

Digel, S. & Roth, J. (2021). Do qualitative experiments on functional relationships foster covariational thinking? In Inprasitha, M., Changsri, N., Boonsena, N. (Eds.). Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 218-226). Khon Kaen, Thailand: PME.





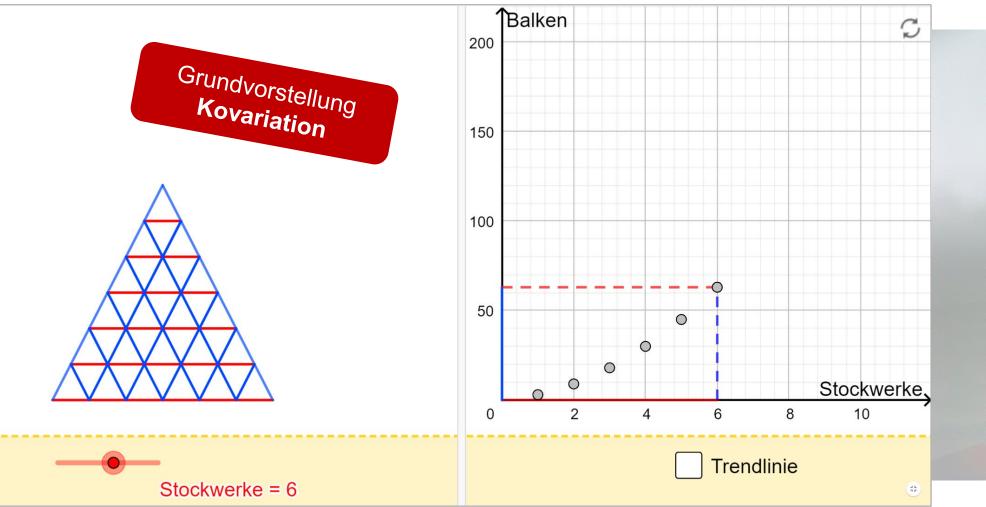


Gefäß: Füllmenge → Füllhöhe

Digel, S. & Roth, J. (2021). Funktionales Denken durch qualitative Experimente fördern?! In K. Hein, C. Heil, S. Ruwisch & S. Prediger (Hrsg.). Beiträge zum Mathematikunterricht 2021 (S. 47-50). Münster: WTM Verlag. Höhe in cm Füllmenge in ml: 260 10 Grundvorstellung **Kovariation** Füllmenge in ml, 100 150 200 250 50 300 + 20 ml Gefäß leeren

Kartenhaus: Anzahl Stockwerke → Anzahl Balken

Digel, S. & Roth, J. (2021). Funktionales Denken durch qualitative Experimente fördern?! In K. Hein, C. Heil, S. Ruwisch & S. Prediger (Hrsg.). Beiträge zum Mathematikunterricht 2021 (S. 47-50). Münster: WTM Verlag.



Mit Funktionen denken und arbeiten

Wie digitale Lernumgebungen dabei unterstützen können

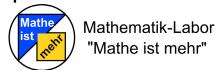
- 1 Grundvorstellungen zu Funktionen
- 2 Typische Schülerfehler beim Umgang mit Funktionen
- 3 Digitale Lernumgebungen
- 4 Experimentieren mit gegenständlichen Materialien und Simulationen
- 5 Digitale Lernumgebungen zu funktionalen Zusammenhängen

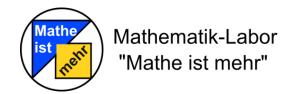
Mathematik lehren 226 Mit Funktionen denken und arbeiten

https://juergen-roth.de/publikationen/

https://roth.tel/funktionen/

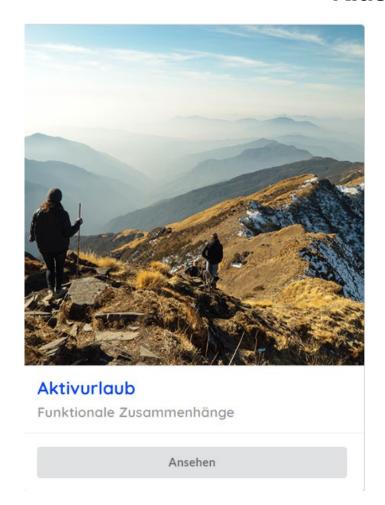
https://mathe-labor.de

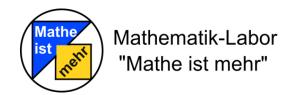




https://mathe-labor.de

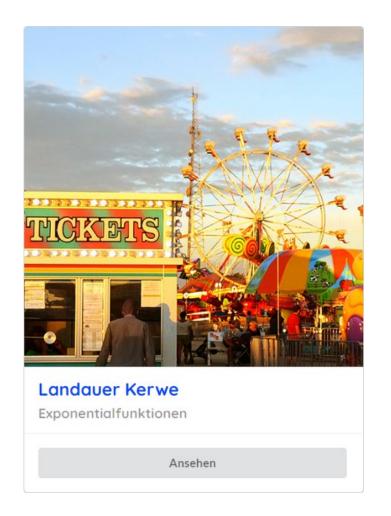
Klassenstufe 7 und 8

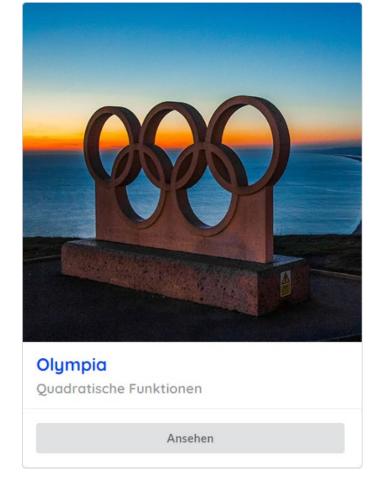


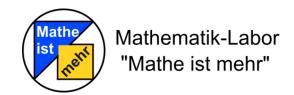


https://mathe-labor.de

Klassenstufe 9 und 10

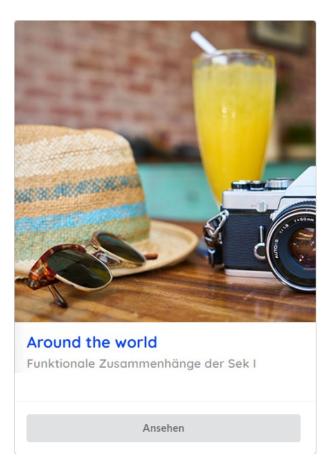






https://mathe-labor.de

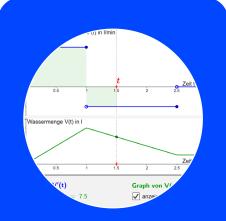
Klassenstufe 11 und 12



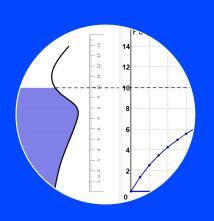
Rückblick

Grundvorstellungen zu Funktionen

Typische Schülerfehler



Digitale Lernumgebungen



Experimentieren mit gegenständlichen Materialien und Simulationen

Digitale
Lernumgebungen
zu funktionalen
Zusammenhängen

Vielen Dank für Jhre Aufmerksamkeit



roth.tel