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Covariation is a major aspect of functional thinking, but not easily accessible for students. Even more 
it is somewhat underrepresented in mathematics teaching at school compared to the correspondence 
aspect. Since experiments have proven to be particularly beneficial for functional thinking, two 
experiment-based approaches have been developed and evaluated with regards to the learning of 
functional thinking. One approach uses a numerical setting, which emphasises the correspondence 
aspect. A second, qualitative approach sets the focus on covariation. In this paper we discuss a 
qualitative analysis on the development of the covariation aspect during intervention in the numerical 
and the qualitative setting respectively in eight focus groups (high-/low-achieving), using the levels 
of covariational reasoning. In accordance with quantitative findings the groups in the qualitative 
setting show higher levels of covariational reasoning and more consistently dynamic argumentations. 
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Conceptual learning of functions  
Functional relationships count as one of the guiding ideas of mathematics education, many everyday 
phenomena can be structured with functions. To recognize functional relationships and describe them 
mathematically it requires functional thinking (FT). Vollrath (1989) describes FT with three aspects 
characteristic when dealing with functions. The first aspect is correspondence, where each value of 
an independent variable is assigned to exactly one value of a dependent variable. Functions are thus 
primarily static, with a local focus, as an correspondence rule of single values. The covariation aspect 
describes how two quantities co-vary, i.e. how the systematic variation of an independent variable 
results in the variation of the dependent variable. This emphasizes the dynamic component of FT. 
Vollrath's (1989) object aspect considers a functional relationship as a whole. It no longer focuses 
only on individual pairs of values or sections of the function, but the set of all value pairs. The function 
is understood as an independent object with properties and with which one can operate.  

Despite its wide presence in mathematics curriculum, many students have difficulties in dealing with 
functions (Ganter, 2013). Although covariation is regarded as central to build adequate mental 
representations of functional contexts (Ruchniewicz, 2022), deficits can be found especially with the 
covariation aspect and at school the focus often lies on the correspondence aspect (ibid.). One reason 
of this imbalance is seen in a numerical introduction to functions, followed by the correspondence-
based definition from Dirichlet, that induce a static view on functional relationships. A dynamic 
perspective on functions, prerequisite for the covariation aspect (Johnson, 2015), is postponed to high 
school mathematics. Or as Thompson and Carlson (2017) put it, there is a lack of opportunity and 
ability to reason dynamically for covariation.  
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Levels of Covariational Reasoning  

Before developing a concept of covariation learners may only consider variation in a single variable 
(Johnson, 2015). The normative goal of the covariation conception is that the continuous variation of 
two variables is considered simultaneously (Thompson & Carlson, 2017). Carlson et al. (2002) 
describe five levels of competence in covariational reasoning in their covariation framework. 
Thompson and Carlson (2017) extend this by a sixth level. Covariational reasoning comprises of all 
cognitive activities of learners that involve variation of two variables in relation to each other (Carlson 
et al., 2002), including consideration of a pair of values, i.e., the correspondence aspect of FT. The 
levels of Carlson et al. (2002) are not described as consecutive stages in the learning process, but 
rather help to describe different conceptual pronunciation of covariation when solving specific tasks. 
Nevertheless, there is a hierarchy of the stages assumed, with a higher stage being associated with a 
more sophisticated concept of covariation (Carlson et al., 2002; Thompson & Carlson, 2017). 

1. In Thompson and Carlson's (2017) first level (no coordination) learners have no conception of 
quantities varying together. They focus only on the unilateral variation of the dependent or the 
independent variable respectively. 2. With a precoordination of values, students consider an 
asynchronous covariation of variables: The change in one variable can already be attributed to the 
change in the other, but in a consecutive way: first one variable is changed and only afterwards the 
second one. 3. The gross coordination of values stage can be understood as directional covariation. 
Learners recognize the directions of the joint variation, (increase/decrease). 4. In the stage 
coordination of values the values of the independent and dependent variables are connected by 
forming discrete pairs of values (x, y). Since this stage is described as the correspondence aspect of 
FT, we use the Quantitative Coordination by Carlson et al. (2002) as fourth stage in our analysis, 
where students quantify the variation in both variables from one state to another. For example, at this 
level students would recognize that the circumference of a circle increases by about 3.14 cm when 
the diameter increases by 1 cm. Finally, Thompson and Carlson (2017) distinguish two types of 
continuous covariation in the last two stages: 5. while on the level of chunky continuous covariation, 
continuity is considered as covariation in chunks, i.e. within closed intervals, on 6. the smooth 
continuous covariation level the whole functional relationship is considered as continuous 
covariation. The exploration of functional relationships assumably promotes higher levels of 
covariation conception (Thompson & Carlson, 2017; Ruchniewicz, 2022).  

Develop functional thinking with experiments 

Numerical approaches induce a static view of functions and contradict the intuitive description of 
functional relationships between two variables with their joint variation (Johnson, 2015; Thompson 
& Carlson, 2017). Therefore, it seems promising to follow a qualitative approach with a focus on 
covariation (Thompson, 1994). As early as in primary school opportunities for experiencing 
functional relationships and covariation should be provided. In the lower secondary level, functions 
should then be used as descriptive means for real-world contexts (Ruchniewicz, 2022; Vollrath, 
1989). Functional thinking is recognizable in the fact that students are able to use, interpret and 
translate between different forms of representation. Hence learning environments should promote 
representational switch (Lichti, 2019). According to Vollrath (1989) the ability to form hypotheses 
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about the kind of relationship and about the influence of variation, to verify and revise them should 
be integrated in learning on FT, cognitive activities that also occur when experimenting. To identify, 
vary and observe the independent and dependent variable are also common for experimenting and for 
FT, which explains why experiment-based approaches have proven to be beneficial for FT (Ganter, 
2013). When experimenting with hands-on material students can experience functional relationships 
immediately, which increases motivation and urges the learners to translate between reality and 
mathematics. On the other hand, it is demanding to deal with measurement errors or inaccurate data 
and the measurement procedure itself binds cognitive resources. Experimenting with simulations 
facilitates the experimental setup and measurement and gives the opportunity for didactic reduction. 
This enables systematic variation and observing covariation. When used as multi-representation 
system with an interactive digital experiment and for example a dynamic graph of the measurement 
data, it supports representational switch. Lichti (2019) reports, that simulations foster FT significantly 
better than hands-on material, but that both foster FT in different ways. Measurement procedures with 
hands-on material induce a static perspective for values and conditions, fostering the correspondence 
aspect. It stimulates basic modelling activities, relating the situation to mathematical description, 
while a simulation already contains a model of the situation. Simulations in turn, when used as multi-
representational systems, illustrate connections between model and mathematical representations 
(e.g. graph and table) that evoke activities for representations and their transfer. The systematic 
variation in simulations develops a dynamic view, concerned with variation as well as transition and 
hence supports the covariation aspect.  

The learning environments 
The intervention analysed in this study is a self-guided hybrid learning environment as introduction 
to functional relationships. It is embedded in a story of two kids building a treehouse. With a 
workbook, a help guide, an experiment box and a website with simulations the learners are guided 
through three contexts with experiments, outlined in a hybrid way, with hands-on material and digital 
simulations. The contexts represent a linear, a quadratic and a varying functional relationship. 

Two different settings are developed, a numerical and a qualitative setting, both using the same hands-
on material, simulations and similar tasks. The students are grouped in four, two students working 
together as pair, the pairs working on similar contexts (see Figure 1) with hands-on material and 
simulations. In the numerical settings the experiments are outlined as follows: in the pre-experimental 
phase students make assumptions about the relationship, in the experimental phase they make 
measurements with the hands-on material and in the post-experimental phases they represent and 
interpret the data in the simulation, set their findings back into the context and abstract their findings 
through comparison with the related pair. In contrast, in the qualitative setting, a dynamic perspective 
is already in focus from the beginning and to quantify the functional relationship is not the objective. 
In the pre-experimental phase, the students estimate values of the dependent variable as a sequence 
(pattern) to predefined values of the independent. Instead of measuring on hands-on material, they 
use the simulation to carry out a digital experiment, observe the variation and covariation of the 
variables and describe it verbally. They interpret the graph in the post-experiment phase. After this 
shorter experimentation process, the whole group of four compare their contexts and findings to 
identify similarities. After this exchange phase, each pair carries out measurements on the context of 
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the respective pair and verify their results. In a second group task, computational results are generated 
for each context. For further details on the learning environments see Digel and Roth (2022).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Contexts of the complementary pairs 

Study design 
The aim of the hybrid learning environment is to foster students' functional thinking and previous 
quantitative studies have shown, that the qualitative settings lead to significantly higher learning gains 
in FT than the numerical setting (Digel & Roth, 2022). According to Johnson (2015), the more 
opportunities are given to talk about covariation, the better it develops. These opportunities were 
explicitly created in the qualitative setting. In this study the following questions guide the analysis: 

(RQ 1) How does the aspect of covariation develop during training? 

(RQ 2) Are there differences in the development between the qualitative and the numerical approach? 

16 high- and 16 low-performing students in the 6th and 7th grades of two grammar schools were 
videotaped when participating in the intervention with the numerical and the qualitative learning 
environments at the mathematical school lab of the University in Landau. Participation took place in 
July and August 2021. They worked in groups of four three times 90 minutes on one morning. All 
had little or no previous experience with functions in mathematics lessons. Two groups of four of the 
low-achievers and two groups of four of the high achievers worked on the numerical setting, the other 
two groups of low-achievers and high-achievers worked on the qualitative setting. Teachers classified 
the students as high-/low-performers. 
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Methods 
To be able to assess how and in which tasks students developed a concept of covariation qualitative 
methods are used due to their open-ended, hypothesis-generating and theory-building nature. The 
statements made by students in group discussions are used to infer the cognitive processes and 
underlying concepts. Video, audio and screen recordings as well as the completed workbooks served 
as data. The versatile documentation of the process makes it possible to understand the process in 
retrospect. The transcription was done according to simple transcription rules (Kuckartz & Rädiker, 
2022) in order to focus on the content. The contributions of students were marked with "S1:" to "S4:", 
the language was smoothed slightly, and dialects were not transcribed. In addition, actions performed 
on the hands-on material or simulations were also transcribed to be able to follow the statements (e.g.: 
S1 measures the diameter of the disc with the ruler). The data material consists of about 15 hours of 
video material as well as 165 pages of transcripts, which makes a highly reduced approach 
recommendable. 

Describing and evaluating Covariational Reasoning 

To examine the concept of covariation on which students argue at what point, content-structuring 
content analysis according to Kuckartz with seven phases is used. The rule-governed procedure 
minimizes the subjectivity of the researcher and make the procedure comprehensible and transparent 
(Kuckartz & Rädiker, 2022), leading to a differentiated system of categories. First, memos were 
written in phase 1 as part of the initiating text work. In the second phase correspondence, covariation 
and object were used as main categories and about 25% of the text material was coded, although some 
passages relevant to the research questions could not be assigned to any of the main categories. These 
passages coded as "other" were compared with each other, which resulted in three further main 
categories (unilateral variation; numerical solution methods; interpreting graphical representations). 
After all the material was coded with these six main categories in phase 3, phase 4 followed with the 
partly inductive, partly deductive formation of subcategories. The main category correspondence is 
divided inductively into the two subcategories static and dynamic. Five subcategories emerged for 
the main category of covariation. The literature comparison showed that the content of the inductively 
found categories corresponded to those of Ruchniewicz (2022), these designations and definitions 
were adopted and complemented with anchor examples from the available transcripts. This resulted 
in the subcategories asynchronous, directional, quantified, chunky and continuous covariation. Since 
the main category of object aspect was generally hardly evident in the students' argumentation, no 
subcategories were formed. The subcategories of the numerical solution methods and the 
interpretation of the graphical representation were chosen deductively. The subcategories for 
graphical representation were deductively adopted from Ruchniewicz (2022). Following the 
formation of the subcategories, in phase 5 the text passages previously coded with main categories 
were each assigned a subcategory which led to minor adaptations. The final coding manual can be 
downloaded in the GeoGebra learning environment (https://www.geogebra.org/m/nrvgxawv). In 
phase 6, the results were processed to enable interpretations. These results were interpreted in phase 
7 to answer the research questions and generate hypotheses. 
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Results 
The coding of all transcripts of the two pairs of low-achievers and two pairs of high-achievers resulted 
in the following frequencies of coding units of the main categories (table 1).  

Table 1: Coded units in the main categories 

 Numerical Setting Qualitative Setting 

High-achievers Low-achievers High-achievers Low-achievers 

Pair 1 Pair 2 Pair 1 Pair 2 Pair 1 Pair 2 Pair 1 Pair 2 

Total units 82 89 26 33 56 175 52 60 

Unilateral variation  6 10 3 5 8 33 9 10 

Correspondence 24 31 14 11 12 38 14 24 

Covariation 19 26 4 11 19 82 21 24 

Object - - - 1 - - - - 

Interpret graphical 
representation 

25 22 - 5 11 15 6 1 

Numerical solution  8 1 5 - 7 7 2 1 

 
As a first result it is noticeable that in both groups of the numerical setting significantly less units 
were coded than in the groups of the qualitative setting (during the same time frame of intervention), 
i.e. students in the numerical settings discussed less content relevant to FT. Furthermore, students in 
the qualitative setting speak considerably more about covariation but not less about correspondence, 
in total and in relation to all coded units. Table 2 shows a timeline with coding units assigned to the 
subcategories related to FT resolved in the single tasks (1.1 – 4) of the learning environment in the 
groups of high-achievers. In the qualitative setting (top) static correspondence (sZ, yellow) still plays 
a major role in task 1, but hardly occurs in task 2 and already in task 1.4 it is superseded by quantified 
covariation (qKV, green). The focus of the argumentation of this group lies on covariation (green), it 
is constantly present across the tasks, develops in a staircase and there is a progression in the level of 
covariation (light green to dark green). Unilateral variation (orange) is present in many tasks, mostly 
of independent as well as dependent variable. The low-achievers qualitative group shows a similar, 
but weaker pattern for correspondence and covariation, with less units coded in total and more gaps. 
In the high-achievers numerical setting (table 2 bottom) it strikes that in total only few units were 
coded and there were no arguments present related to FT over several consecutive tasks. Starting with 
static correspondence, covariation first occurs in task 1.11 and is not taken up in longer passages, but 
only from task 2.8 on, where a progression takes place. Unilateral variation is only applied on the 
independent variable. The timeline of the low-achieving numerical group shows FT arguments only 
punctually (in six tasks), no progression and a low level of correspondence as well as covariation. 
Both high-achievers groups reach the level of continuous covariation. In tasks where covariation 
develops, the focus is on the representation forms simulation (S) and/or graph (G). It can thus be 
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Table 2: High-achievers’ timeline of coded subcategories qualitative (top) / numerical (bottom) group 

 

 
confirmed that especially dynamic forms of representation promote the covariation aspect and thus 
also the development of FT. Covariation seems to play an essential role in translation processes 
between situation and graph and turns out to be the dominant notion.  

Discussion 
The multiple fixations of the data (video, audio, screen records, workbooks) results in a high level of 
internal validity (Kuckartz & Raediker, 2022). Although sample size is limited, the results are in line 
with quantitative results (Digel & Roth, 2022) and theory outlined earlier in this paper, showing 
external validity. In both the numerical and qualitative settings, the groups first argue based on the 
correspondence aspect before adopting the covariation perspective (RQ1), which indicates that the 
latter is not easy to grasp. Tasks that use situation with simulation and graph support the development 
of covariation for all high-achievers but only in the qualitative setting for low-achievers (RQ1). All 
high-achievers and the low-achievers in the qualitative setting argue over more than one level of 
covariation (RQ1). In all qualitative settings they tend to show staircases and a roughly chronological 
sequence along the levels according to Thompson and Carlson (2017), but as described by Carlson et 
al. (2002) not all stages are passed through consecutively. Exchange tasks support covariational 
argumentation and correspondence as well as covariation are intensely used. Thus, it can be 
concluded that especially with a qualitative approach to functions, the possibility of free exchange 
fosters covariation and FT. Covariation develops in the data from the lower to the higher levels of 
covariational reasoning. More exploration of functional relationships seems to help students reach 
higher levels of covariation understanding. Regarding unilateral variation (RQ2) the focus of the 
independent variable of high- and low-achievers numerical settings opposed to the diverse view on 
variation of independent and dependent variable in both qualitative settings (high/low) also confirms 
that the qualitative, dynamic approach is beneficial for covariational reasoning. Finally, there is a 
dominance of quantified covariation, also in the high-achiever groups. Arguing at this level of 
covariational reasoning seems to be the most accessible to the students, also in the qualitative groups.  
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To sum up, the results presented here confirm quantitative results of higher learning gains regarding 
functional thinking in the qualitative setting and stress the importance of covariation. The exchange 
tasks are identified as key phases, in which covariation is particularly promoted, which is in 
accordance with Thompson and Charlson’s (2017) opportunity for covariational reasoning.  
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