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Hands-on experiments and simulations foster functional thinking (FT) in different 

ways. Both benefits can be combined effectively, when a focus is set on the difficult 

aspect of covariation through a qualitative approach. Self-directed learning in such 

settings produces significantly higher gains in FT that rather numeric consideration of 

experiments (Digel and Roth, 2021). Both settings were implemented as in-classroom 

(N=219) and distance learning environments (N=113) respectively, within the given 

constraints due to COVID-19. The results for distance learning Hammerstein et al. 

(2021) report in their meta-study are inconsistent, but with clear negative tendency. In 

the study reported here both learning modes show comparable results and the overall 

differences between covariational and numeric setting persist in both modes as well. 

DISTANCE LEARING DURING THE PANDEMIC SITUATION 

The restrictions due to COVID-19 set a focus on digital teaching strategies and 

revealed deficits in the school system concerning this topic. Despite intensive efforts of 

many schools, the average increase in learning during the first lockdown in Germany 

was comparable to that during the summer holidays, i.e. without school operations 

(Hammerstein et al., 2021). With regard to mathematics, the picture in Germany is not 

entirely consistent at the first glance. In their study on digital learning environments 

(bettermarks), Spitzer and Musslick (2021) found performance increases in the cohort 

with lessons under corona conditions comparable to the previous year's cohort. In an 

annual school performance study in Baden-Württemberg, there were significant 

learning deficits compared to previous years, especially in operational, mathematical 

skills, while performance in arithmetic (calculation-related) skills was at the level of 

previous years (Schult et al., 2021). The authors interpret these findings as indicators 

for an arithmetic focus in mathematics distance learning. Considering that the digital 

learning environments of bettermarks also strongly emphasise arithmetic, lower gains 

for operational and conceptual learning can be assumed in this case as well.  

Distance Learning of weak learners 

Related to pre-COVID performance, distance learning also increased the differences in 

learning achievement. In particular, low achievers showed lower gains compared to 

previous years (Schult et al., 2021), which could also be due to the significantly shorter 

learning time for this group. In addition, learners with low SES background had 

significantly poorer conditions for distance learning (Hofer et al., 2022). Our study 

does not replicate these negative findings. The learning environments for FT based on 
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experiments with hands-on and digital material showed comparable learning gains in 

both grammar and comprehensive schools during distance and in-class learning. 

DEVELOPING A CONCEPT OF FUNCTION 

The concept of functions is a major concept and at the same time a major hurdle in 

mathematics at school. Hence a considerable amount of research has been dedicated to 

the teaching and learning of functions. For the learning environments used in this study 

we try to bring together several branches of evidence to a coherent approach to the 

concept of functions. Breidenbach et al. (1992) used the 

Action-Process-Object-Scheme (APOS) theory for a developmental perspective on 

students’ conceptualization of functions. The action concept on the lowest level is 

limited to the assignment of single output values to an input. With the more generalized 

process concept students consider a functional relationship over a continuum, enabling 

the reflection on output variation corresponding to input variation. Finally, functions 

conceptualized as objects can be transformed and operated on. Students with an 

elaborate concept of functions are supposed to be able to use the action, process or 

object conception depending on the mathematical situation (Dubinsky & Wilson, 

2013). 

Aspects of functional thinking 

The developmental stages of APOS are in line with key elements of a function concept, 

that are described as aspects of functional thinking (FT) by Vollrath (1989) as follows: 

the correspondence of an element of the definition set to exactly one element of the set 

of values; the covariation of the dependent variable when the independent variable is 

varied and the final aspect, in which the function is considered as an object. Although 

with the APOS perspective one might deduce a teaching sequence with an initial focus 

on correspondence, then covariation and finally object, current research advocates for 

a major role of covariation. Thompson and Carlson (2017) argue that the 

correspondence aspect alone does not evoke an intellectual need for the new concept 

function and difficulties with functional relationships are mainly rooted in lacking 

ability and opportunity to reason covariationally. Johnson (2015) points out that 

correspondence induces a static view on a functional relationship, while a dynamic 

perspective is a prerequisite for covariation and a process concept. These arguments 

lead to the call for a qualitative approach to functional relationships in school. 

Experimenting fosters functional thinking 

Learning environments with experimentation activities have proven to be beneficial 

for functional thinking (Lichti & Roth, 2018). One possible explanation could be the 

proximity of functional thinking to scientific experiments as illustrated by Doorman et 

al. (2012): with a given variable as starting point, a dependent variable is generated in 

an experiment. Relating the output to the input clearly addresses the correspondence 

aspect and the action concept. Following manipulations of the input and concurrent 

observation of the output make the covariation of both variables tangible and enables a 
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process view. Another benefit of student experiment is the inherit constructivist 

learning approach that leads to higher learning gains in combination with digital 

technologies (Drijvers, 2019). Lichti and Roth (2018) implement the scientific 

experimentation process – preparation (generate hypotheses), experimentation (test the 

hypotheses) and analysis (conclusions) – in a comparative intervention study to foster 

functional thinking of sixth graders with either hands-on material or simulations and 

report learning gains for both approaches (ibid.), but a closer look reveals disparities 

that can be explained with the instrumental genesis. 

Hands-on experiments and simulations in the light of instrumental genesis 

The instrumental approach (Rabardel, 2002) and its distinction between artefact and 

instrument can be useful when interpreting these results: while the artefact is the object 

used as a tool, the instrument consists of the artefact and a corresponding utilization 

scheme that must be developed. This developmental process - the so-called 

instrumental genesis - depends on the subject, the artefact and the task in which the 

instrument is used. Hence, different artefacts lead to different schemes.  Artefacts that 

are more suitable for the intended mathematical practice of a task appear to be more 

productive for the instrumental genesis and facilitate the learning process (Drijvers, 

2019). When using simulations, schemes that develop are dynamic and concerned with 

variation as well as transition and hence support the covariation aspect (Lichti, 2019). 

Measurement procedures of the hands-on material induce static schemes for values and 

conditions, fostering the correspondence aspect (ibd.). While hands-on material 

stimulates basic modelling schemes, relating the situation to mathematical description, 

a simulation already contains a model of the situation. When used as 

multi-representational systems, the simulation illustrates connections between model 

and mathematical representations (e.g. graph and table) that evoke schemes for these 

representations and their transfer. The study presented here attempts to make use of 

both beneficial influences on the instrumental genesis through an appropriate 

combination of hands-on material and simulations in experimental activities to foster 

functional thinking. 

Fostering the conceptual development 

To foster FT we combine hands-on experiments and simulations with the premise of a 

productive instrumental genesis as follows: hands-on material at the beginning initiates 

modelling schemes. Subsequently, simulations facilitate the representational transfer 

(table – graph; situation/animation – graph), enable dynamic exploration of the 

relationship and systematic variation, thus fostering an understanding of covariation. 

Finally, measurements with hands-on material convey the correspondence aspect. The 

two different settings developed for this study are outlined as a scientific 

experimentation process with the three phases hypotheses, experimentation, analyses. 

The numeric setting follows the APOS steps sequentially and gives the measurement 

procedure a dominant role in the experimentation phase. This sets a focus on the 
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correspondence aspect. In the analyses phase the learners access the covariation aspect 

with simulations, that connect an accordingly designed animation with the dynamic 

representations of the relationship in a table and a graph.The second, covariational 

setting consequently fosters a dynamic view on the relationship and the related 

variables. It is implemented with two shorter scientific experimentation processes. 

After initial hypotheses with hands-on material, the experimentation phase with 

simulations immediately sets the focus on (co-)variation through. The analyses phase 

complements the animation with a dynamic representation of the relationship in a 

graph. Only after this phase, measurement data is generated with hands-on material 

and fed into the simulation to test the results on the relationships drawn so far. 

Both settings use a story of two friends preparing to build a treehouse and contain 

identical contexts, hands-on material and simulations. The tasks of each setting are 

similar, but adapted to the numerical and covariational focus respectively. Both 

settings can be accessed in digital classrooms (www.geogebra.org/classroom 

numerical Setting: HQX7 UZRQ and covariational Setting: D3XM DDSB). 

STUDY DESIGN 

A comparative intervention study (pre-post design) is implemented both in distance 

and in-classroom learning mode with seventh and eighth graders at grammar and 

comprehensive schools. It contrasts the covariational and numerical settings and 

includes an additional control group with the simulation only implementation of Lichti 

and Roth (see above). The intervention is designed for six lessons (split into three 

sessions). It is preceded and followed by a short test on functional thinking (FT-short, 

online version: www.geogebra.org/m/undht8rb, Rasch-scalable, 27 items, see Digel & 

Roth, 2020), to compare the learning outcomes in both settings. Students work in 

teams of two pairs. A pilot study (ibid.) verified the comparability of the covariational 

and numerical setting in terms of processing time and difficulty. In this paper we 

present results with a focus on school form and learning mode: 

RQ 1: Which setting is most beneficial for FT in the different school forms? 

Hypothesis Grammar > Comprehensive: Large studies on student assessment 

regularly show lower competence levels in comprehensive schools to grammar schools 

(OECD, 2019), a gap that is getting wider (Guill et al., 2017). Regarding the different 

settings, the focus on the difficult covariation aspect in the covariational setting could 

overburden lower competence levels and thus increase the competence gap. Dubinsky 

and Wilson (2013) in contrast foster low achievers on all APOS levels of the concept of 

function successfully. 

RQ 2: Does the learning mode (in-class/distance) have an impact on the learning 

gains in the compared settings? 

Hypothesis In-Class > Distance: All three settings focus on conceptual competences, 

while arithmetic competences are secondary. According to the discussion in the first 
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section in this paper, lower learning gains can be expected in distance learning, 

especially in comprehensive schools.   

METHOD 

Data analysis was conducted according to Item Response Theory. The dichotomous 

one-dimensional Rasch model and a virtual persons approach were used to estimate 

item difficulties for FT-short. The person ability was then estimated with fixed item 

difficulties. We applied mixed ANOVAs (between factors: setting, school form, 

learning mode; within factor: time) after controlling data for normal distribution and 

homogeneity of variance. Pairwise t-tests were used to investigate differences of the 

settings. A statistical power analysis (3 groups, 2 measurements, power .9, α =.05) for 

a medium effect (ηp
2
 = .06) in a mixed ANOVA gave a desired sample size of 204. 

RESULTS 

Here we present quantitative results of the main study (N = 332, 121 female, 187 male, 

age M = 13.0, SD = 4.8). The distribution of the sample over the settings and 

constraints is shown in table 1. The estimation of the Rasch-model, used to determine 

the person abilities for the total sample, showed good reliabilities in the pre- and 

post-test: EAP-Relpre = .86 and EAP-Relpost = .80 as well as WLE-Relpre = .85 and 

WLE-Relpost =.80.  

Table 1: Sample sizes and effect sizes Cohens d (pre/post) of subgroups 

 Covariational 
Setting 

Numerical 
Setting 

Control Group Total 

 N d N d N d N 

Total 114 .51*** 125 .25*** 93 .27*** 332 

Comprehensive/ 
Grammar 

39 
75 

.63*** 

.48*** 
52 
73 

.32*** 

.27*** 
66 
26 

.34***  

.28*** 
157 
175 

Distance 
In-Class 

36 
78 

.48*** 

.56*** 
39 
86 

.33**  

.28*** 
38 
55 

.36**  

.30** 
113 
219 

Comparisons of the settings under constraints 

Regarding the school form (see Figure 1 left) the mixed ANOVA showed a significant 

main effect for time (F(1, 326) = 197.34, p <.001, ηp
2
 =.38) and a significant effect of 

school form (F(1, 326) = 87.82, p <.001, ηp
2
 =.21).  Above, there are two significant 

interaction effects: between time and setting (F(2, 326) = 5.92, p <.005, ηp
2
 =.018) and 

between time and school form (F(2, 326) = 9.57, p <.005, ηp
2
 =.029). The grammar 

school students outperformed the comprehensive school students in the pretest 

significantly (t(174) = 8.09, p <.001, d = .61), but for both school forms students’ 

ability increased significantly with a small to medium effect (grammar: t(425) = 7.08, 

p <.001, d = .34; comprehensive: t(216) = 5.84, p <.001, d = .40). In both school forms 

students in the covariational settings showed the highest learning gains (see Table 1).  
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Figure 1: Increase in FT pre/post by setting, school form (left) / learning mode (right) 

The mixed ANOVA for learning mode (see Figure 1 right) resulted in one significant 

main effect for time (F(1, 326) = 170.88, p <.001, ηp
2
 =.34), one for learning mode 

(F(1, 326) = 10.85, p < .001, ηp
2
 = .03) and a significant interaction effect of time and 

setting (F(2, 326) = 3.63, p < .005, ηp
2
 = .02). In both learning modes the covariational 

setting shows the highest learning gains (see table 1). The students with in-class 

learning showed slightly higher results in the pretest (t(153) = 2.19, p < .05, d = .18). 

The overall learning gains in distance learning (t(150) = 3.48, p < .001, d = .28) are 

comparable to those in-class (t(149) = 4.57, p < .001, d = .38).  

DISCUSSION 

First of all, the results are not generalizable without reservation, since they depend on 

the concrete settings developed in the study. Another restriction is the disbalance of 

subgroups, caused by altering pandemic restrictions in participating schools. 

Nonetheless, results of the total sample show that both settings foster FT, while the 

covariational setting is significantly more beneficial for FT than the numerical setting, 

but the learning effects in the latter do not differ significantly from those in the control 

group (see Digel & Roth, 2021). Two characteristics of the covariational setting seem 

most influential: first, the early focus on the dynamics of the observed variables 

provides opportunities to reason variationally and to develop a dynamic view on 

functions. Second, replacing early measurement with investigation and observation of 

the relationship initiates practice in covariational reasoning. 

The significant advantages of the covariational settings also appear in both school 

forms (RQ1). Significant difference in pretest between grammar and comprehensive 

schools in FTshort (d = 0.61) are as expected, but these disparate competence levels are 

not reinforced by the intervention, in contrary, learning gains in the comprehensive 

school sample outperform those of the grammar school sample. FT seems to be 

Comprehensive   Grammar 

F
u

n
ct

io
n

a
l 

th
in

k
in

g
 (

lo
g
it

) 

 Distance                In-Class 

Pre            Post       Time        Pre                 Post Pre         Post     Time     Pre            Post 



Diegel, Roth 

 

 

PME 45 – 2022 2 - 233 

 

accessible in the three settings to learners on all competence levels and the 

covariational focus is also beneficial to lower levels of FT and not restricted to high 

achievers, which replicates Dubinsky and Wilson (2013).  

The results regarding RQ2 are limited through a possibly lower level of engagement 

and focus in the pre- and post-tests in distance learning. Nevertheless, we can conclude 

from the results that all three learning environments promote functional thinking in 

distance and in-class to a comparable extent. This is contrary to previous studies on the 

effectiveness of distance learning, especially in the case of conceptual skills, such as 

FT here. There are three different explanations for this: On the one hand, motivational 

influences may have favoured the learning process in distance, since hands-on 

experiments set in everyday contexts and group work with individual coaches stand 

out positively. Secondly, inquiry-based learning with open tasks contrasts distance 

learning which is rather dominated by arithmetic and initiates intensive interaction 

with the concept as well as higher cognitive activation. A continuous interaction with 

partners/teams enables co-construction processes and mathematical communication 

about ideas, hypotheses, approaches and thus intensifies interaction with the content. 

To sum up, the covariational approach to functions with experiments (1) attains higher 

learning gains across competence levels, (2) successfully transfers in-class activities to 

distance learning with comparable learning gains, (3) makes the covariational aspect 

accessible for high and low achievers and (4) benefits from the combination of 

hands-on material and simulations. In classroom practice (distance or in-class), an 

approach to functions designed accordingly has the potential to enhance learning gains.  
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