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Students encounter functional relationships in almost every grade. Nonetheless, they 
often experience difficulties when dealing with functions and show misconceptions. The 
prevalent numerical approaches to the topic in school practice lead to a pointwise view 
of functions which contributes to these problems. Experimental approaches have 
proven to be beneficial for functional thinking, with simulations inducing greater 
learning gains than experiments with real material. A closer look at these two methods 
reveals that each of them promotes a different aspect of functional thinking. The study 
presented here deals with the question of how both methods can be combined 
beneficially and proposes two different approaches.  
Keywords: functional thinking, experiments, simulations, covariation. 

FOSTERING FUNCTIONAL THINKING 
According to Vollrath (1989), functional thinking is based on three main aspects: the 
correspondence of an element of the definition set to exactly one element of the set of 
values; the covariation of the dependent variable when the independent variable is 
varied and the final aspect, in which the function is considered as an object. This 
differentiation is in line with the developmental perspective on students’ 
conceptualization of functions derived by Breidenbach et al. (1992) using the Action-
Process-Object-Scheme (APOS) theory. The action concept on the lowest level is 
limited to the assignment of single output values to an input. With the more generalized 
process concept students consider a functional relationship over a continuum, enabling 
the reflection on output variation corresponding to input variation. Finally, functions 
conceptualized as objects can be transformed and operated on. Students with an 
elaborate concept of functions are supposed to be able to use the action, process or 
object conception depending on the mathematical situation (Dubinsky and Wilson 
2013).  
Learning environments with experimentation activities have proven to be beneficial 
for functional thinking (Lichti and Roth 2018, Ganter 2013) and motivation (Ganter 
2013). One possible explanation could be the proximity of functional thinking to 
scientific experiments as illustrated by Doorman et al. (2012): with a given variable as 
starting point, a dependent variable is generated in an experiment. Relating the output 
to the input clearly addresses the correspondence aspect and the action concept. 
Following manipulations of the input and concurrent observation of the output make 
the covariation of both variables tangible and enables a process view.  
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Furthermore, experiment activities enable constructivist settings, that lead to higher 
learning gains when using digital technologies (Drijvers et al. 2016) and provide 
embodied experiences, contributing as cognitive resources (Drijvers 2020).  
Lichti and Roth (2018) implement the scientific experimentation process – preparation 
(generate hypotheses), experimentation (test the hypotheses) and post-process (reflect 
results) – in a comparative intervention study to foster functional thinking of sixth 
graders with either hands-on material or simulations and report learning gains for both 
approaches (ibid.), but a closer look reveals disparities: while hands-on material 
promotes the correspondence aspect and the association to the real situation, 
simulations foster covariational thinking, the interpretative usage of graphs and lead to 
higher overall gains in functional thinking (Lichti 2019). 
The instrumental approach (Rabardel 2002) and its distinction between artefact and 
instrument can be useful when interpreting these results: while the artefact is the object 
used as a tool, the instrument consists of the artefact and a corresponding utilization 
scheme that must be developed. This developmental process - the so-called 
instrumental genesis (Artigue 2002) - depends on the subject, the artefact and the task 
in which the instrument is used. Hence, different artefacts lead to different schemes.  
Artefacts that are more suitable for the intended mathematical practice of a task appear 
to be more productive for the instrumental genesis and facilitate the learning process 
(Drijvers 2020). In addition, embodied activities in a task seem to contribute to the 
instrumental genesis (ibid.). From the viewpoint of instrumental genesis, the results of 
Lichti (2019) can be interpreted as follows: when using simulations, schemes that 
develop are concerned with variation and transition, while measurement procedures of 
the hands-on material induce schemes that concentrate on values and conditions (ibid.). 
The students working with hands-on material associate their argumentation more often 
with the material, while the rationale of students using simulations frequently relates 
to the graph. Again, the instrumental genesis can explain these disparities: the hands-
on material stimulates basic modelling schemes, relating the situation to mathematical 
description. Simulations already contain models of a situation and when used as multi-
representational systems (Balacheff and Kaput 1997) illustrate connections between 
model and mathematical representation (e.g. graph and table) that evoke schemes for 
these representations and their transfer.  
The study presented here attempts to make use of all these beneficial influences on the 
instrumental genesis through an appropriate combination of hands-on material and 
simulations in experimental activities to foster functional thinking. 

SETTING 1: EXPERIMENTS WITH HANDS-ON MATERIAL AND 
SIMULATIONS 
The learning environment is set in a story of two friends preparing to build a treehouse. 
The student activities are structured in five contexts (see below for details), each one 
laid out like a scientific experimentation process with preparation, experimentation and 
post-processing phase. Starting off with hands-on material to activate modelling 
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schemes and enable embodied experience, students are asked to make assumptions 
about a pattern or relationship and on that basis, estimate values. During 
experimentation phase they take a series of measurements and data is recorded in a 
table within a simulation (GeoGebra). The simulation is designed in accordance to the 
hands-on material and provides the opportunity to create a graph concurrent with the 
context animation and to display the measurements of the hands-on material (and a 
corresponding trendline). This gives students the opportunity for systematic variation 
and parallel observation of the altering quantities, to induce schemes with a dynamic 
view and covariational thinking. Above, it facilitates the time consuming but little 
challenging representational switch from table to graph (Bossé et al. 2011). In the post-
processing phase the students verify their measurements and analyse the graph 
(interpreting and interpolating). Subsequently they get back to the real material to 
check their estimations from preparation phase. Finally, they elaborate on the answer 
to the overarching task (calculate the amount of material needed to build the treehouse) 
based on the insights from experimentation activities, bringing together the modelling 
and representational schemes developed.  

SETTING 2: ALTERNATIVE COMBINATION OF ARTEFACTS WITH A 
FOCUS ON COVARIATION 
In setting 1 proposed above the measurement plays a dominant role, which sets a focus 
on the individual values of quantities and on single states of the relationship. This leads 
to a pointwise view of functions (Monk 1992), promotes the action concept and 
concentrates on the correspondence aspect (see above). In accordance with 
Breidenbach et al. (1992) and Dubinsky and Wilson (2013) it would be desirable to 
shift this focus to a process concept and to covariation, especially since possible 
sources of student’ difficulties with functional relationships are seen in the dominance 
of numerical settings in school (Goldenberg et al. 1992). Together with the close 
relation of covariation to the difficult concept of variables (Leinhardt et al. 1990), this 
led to the call for a qualitative approach to functions (Thompson 1994; Falcade et al. 
2007; Thompson et al. 2013) to facilitate the idea of covariation. Thus, in a second 
setting explicitly choses a non-numerical approach for experimenting with immediate 
examination of covariation.  
The learning environment of setting 2 is structured accordingly to setting 1, with 
modifications in the experimental structure of the contexts: in the preparation phases 
of the first three contexts the students are only briefly introduced with estimation tasks 
based on hands-on material, before they use simulations to identify the related 
quantities. In the following experimental phase, the students observe the variation and 
covariation of the quantities in the simulations and verbally describe the relationships 
discovered. Subsequently graphs are generated within the simulations and in the post-
processing phase students are asked to analyse the form of the graphs and connect their 
insights with the relationship described in the previous phase, before they observe 
individual values of quantities to check their estimations and answer the overarching 
task like in setting 1. The last two contexts are again briefly introduced with hands-on 
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material and estimation tasks, followed by the request for verbal descriptions of the 
relationships. Based on these descriptions and on their insights from the previous 
contexts, students are asked to group the contexts by their kind of covariation. The 
students then continue with the experimentation phase and take measurements with the 
hands-on material and then proceed with simulations as in setting 1. In the post-
processing phase students are now asked to verify their hypotheses on the relationships 
and their grouping with the graphs and tables from the experimental phase. Finally, 
students check their estimations and answer the overarching task like in setting 1. 

CONTEXTS  
Both settings use a treehouse building story with identical overarching tasks. The 
contexts are implemented with the same hands-on material (see figure 1 and 2) and 
simulations, but different components of the simulations are visible in the settings.  
 

 
 
 

Figure 1: Hands-on material of the first three contexts in setting 1 and 2   

The contexts are chosen to represent a linear and a quadratic relationship and one with 
varying change rate: the perimeter of a circular disc determined by its diameter, the 
number of cubes needed for a “staircase” determined by the number of steps and the 
fill height of a vessel determined by the volume of water filled into. 
 
 
 
 

Figure 2: Hands-on material of contexts 4, 5 and bonus context 6 

Contexts four and five (linear and quadratic) are the weight of a package of nails 
determined by the number of nails and number of beams needed for a woodwork 
determined by the number of floors. A bonus context for quick learners depicts the 
diameter of a unrolling tape determined by the length of tape that has been unrolled.  
The simulations can be accessed in the digital classrooms 
(www.geogebra.org/classroom – for Setting 1, Team Engineers: Code HQX7 UZRQ – 
for Setting 2, Team Architects: Code D3XM DDSB). 

STUDY DESIGN 
A comparative intervention study (pre-post design) will contrast the two approaches to 
answer the following research question: 
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Is it possible to recognize differences between setting 1 and setting 2 in the processing of 
the tasks regarding the aspects of functional thinking and the conceptualization of function? 

The intervention will take place at the University of Koblenz-Landau, as part of the 
mathematics laboratory program, where school classes work in groups of four in half-
day projects with hands-on material and computer simulations. The intervention is 
preceded by a short test on functional thinking (FT-short, adapted from Lichti and Roth 
2018), to compare the learning outcomes in both settings, and a three-minute 
intelligence screening (Baudson and Preckel 2016). Both tests take place 
approximately one week before. The intervention is designed for three 90-minutes-
lessons including the post test of FT-short. A follow-up of the test is planned 4-8 weeks 
after the intervention. Two focus groups (low-/high-performer in FT-short) per school 
class will be videotaped. All student products and videos from the intervention are 
evaluated regarding the presence of the aspects of functional thinking (qualitative 
content analysis, validated category system from Lichti 2019) and the students’ 
function conceptualization is assessed using the indicators from Dubinsky and Wilson 
(2013).  
A pilot study intends to verify the comparability of the two approaches in terms of 
processing time and difficulty. Due to the corona shutdown and the ongoing rules for 
physical distancing the study is adapted to an online classroom supplemented with a 
“math box” containing the hands-on material. The dyadic approach and the videotaping 
in the pilot are replaced by an expert rating (questionnaire with four-point Likert scale 
N = 4 / open answers N = 9) and a reflective analysis based on the ALACT model 
(Korthagen 2017) with student teachers (N = 12, masters course in mathematics). The 
student pilot took place in two sessions with students from a high-school course held 
by the first author. They were assigned to the settings so that results in the FT pretest, 
overall math skills (half-term grade) and reading skills (half-term grade; two dyslexics) 
were equally represented in each setting. 

PRELIMINARY RESULTS AND DISCUSSION 
Here we present preliminary results of the student pilot study. One participant in each 
setting completed the whole program including the bonus context, two in setting 1 and 
three in setting 2 completed the 5th context (hence only bonus left) and the other 
students were still working on the 4th/5th context when time elapsed, so that regarding 
time both settings seem to be comparable. One identical task for both settings will be 
discussed in detail and compared with a related task of the FT pretest, indicating 
differences in the conceptual development. 
In task no.48 students are asked to describe how the fill height of the liquid rises in the 
curved vessel using the graph and a given word list (slow, fast, steep, flat, rise, broad, 
narrow). In setting 2 all students were able to combine the fill height at least with the 
form of the vessel in their description, while in setting 1 only two students did connect 
their description of the fill height to the graph or the vessel. One student in setting 2 
wrote:  
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“The liquid rises slow first and from the value 1 on it gets faster because the vessel is broad 
at the beginning. From the value 2 on it becomes slower, because the vessel has a curve in 
the middle and was narrow but now becomes broader. Until value 6 the vessel keeps even, 
but from 6 on it rises up fast because the vessel becomes narrower and narrower. At point 
10 there is a curve again, since the vessel is broader again.”  

Although this student is not capable of interpreting the slope (or the form) of the graph, 
the references to the values indicate a connection between the measurement points in 
the graph and the fill height in the vessel. The description of the varying fill height 
shows a dynamic perspective and the concurrent statements about the variation in the 
vessel form show a covariational conception. One could argue that this conception does 
not include the fill volume itself, but the variation is given in the form of the vessel 
since liquid is filled with a constant rate.   
Another student in setting 2 wrote:  

“When the line is steep in the graph, the water rises fast and the vessel is narrow. When 
the line is flat in the graph, the water rises slow and the vessel is broad.” 

From a semantic view this student is arguing with conditions rather than changes, 
which reminds of a grading in intervals or chunky thinking as described by Castillo-
Garsow et al. (2013). At the same time, he interprets the slope of the graph and connects 
it to the change in the fill height (representational switch), revealing a dynamic 
perspective, but the covariational conception does not include a dynamic perspective 
on the change of the form of the vessel (or at least it is not expressed).  
The most elaborate description in setting 1 was: 

“At first it rises slow because the glass is broad, then it becomes narrower and narrower 
and it rises faster.” 

Although this student grasps a variation in the fill height, the first argument points to 
the correspondence aspect and is based on simplification (constant diameter). The 
second statement shows a more dynamic view of the form of the vessel (“narrower and 
narrower”), but the related fill height is not described accordingly. Hence the 
covariational conception is only displayed in a preliminary stage. 
These analyses only show an extract of the student documents, but they already indicate 
different stages of dynamic view and covariational conception in the two settings. To 
get an idea of the development towards these stages, we conclude with statements form 
a related task in the pretest. In this task students have to assign two out of four given 
fill curves to two vessels (cylinder and frustum of a cone). They provided the following 
explanations (comparably in both settings):  

“the vessel will fill faster and faster; the vessel is even, and the graph is straight; it becomes 
constantly more; at the bottom it fits more; first it takes a while because it is broad at the 
bottom” 
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Compared to the statements discussed above, one can detect a development in a) the 
connection between vessel, fill height and/or graph, b) in the dynamic view of one or 
more quantities and the graph and c) from a correspondence conception towards the 
variation of quantities and covariation.  
Hence both settings are capable to foster functional thinking and the key aspect of 
covariation is addressed since students in both settings improved in the dynamic view 
and/or covariational thinking. The students in setting 2 seem to benefit more regarding 
the interpretation of the graph, which might be caused by the intensified usage of the 
multi-representational simulations. The qualitative approach of setting 2 might have 
set the focus on (co-)variation as intended, at least the improved dynamic perspective, 
better connection between quantities and rudiment covariational conceptions lead to 
this assumption. The main study will give more detailed insights to the development 
of the aspect of functional thinking and the conceptualization. 
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