

Susanne Digel & Jürgen Roth

11.01.2024

Geometrie 4b

- 1. Ideen der Geometrie
- 2. Kongruenzabbildungen der Ebene
- 3. Figuren in der Ebene
- 4. Flächeninhalte
- 5. Ähnlichkeitsabbildungen und ähnliche Figuren
- 6. Satzgruppe des Pythagoras

juergen-roth.de/lehre/m4b-geometrie/

RPTU

Geometrie 4b

Flächeninhalte

4 Flächeninhalte

- 4.1 Reelle Maßfunktion
- 4.2 Flächeninhalte von Rechtecken
- 4.3 Flächeninhalte von Polygonen
- 4.4 Flächeninhalt und Umfang von Kreisen
- 4.5 Ausblick Rauminhalte

RPTU

juergen-roth.de/lehre/m4b-geometrie/

4 Flächeninhalte

- 4.1 Reelle Maßfunktion
- 4.2 Flächeninhalte von Rechtecken
- 4.3 Flächeninhalte von Polygonen
- 4.4 Flächeninhalt und Umfang von Kreisen
- 4.5 Ausblick Rauminhalte

RPTU

juergen-roth.de/lehre/m4b-geometrie/

Flächeninhalt als reelle Maßfunktion

Definition 4.1

Sei \mathbb{R}^2 die Menge aller Punkte der reellen Ebene. Betrachte bestimmte Teilmengen dieser Ebene, die Polygone.

Die Funktion F, die jedem Polygon einen reellen Zahlenwert als Flächenmaßzahl zuordnet, heißt **Flächenfunktion**.

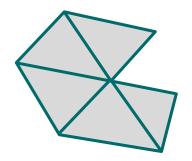
Sie muss folgende Forderungen erfüllen:

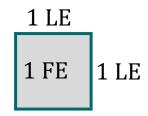
(M1) Nichtnegativität: Für jedes Polynom A gilt $F(A) \ge 0$.

(M2) Additivität: Für alle Polygone A, B gilt: Wenn A und B keine inneren Punkte gemeinsam haben (also höchstens Randpunkte), dann gilt: $F(A \cup B) = F(A) + F(B)$

- (M3) Normierung: Für das fest definierte Einheitsquadrat E mit der Kantenlänge 1 gilt: F(E) = 1.
- (M4) Verträglichkeit mit der Kongruenz: Für alle Polygone A, B gilt: Wenn A kongruent zu B ist, dann ist F(A) = F(B).

Vgl. die Axiome des Wahrscheinlichkeitsmaßes von Kolmogorov





Monotonie

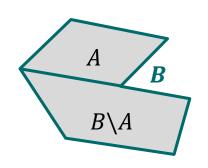
Die Existenz und Eindeutigkeit der Maßfunktion F für beliebige Polygone nehmen wir ohne Beweis an.

Satz 4.1

Die Flächeninhaltsfunktion ist monoton, d.h. wenn $A \subseteq B$, dann gilt $F(A) \le F(B)$.

Beweis:

Voraussetzung: $A \subseteq B$ Zu zeigen: $F(A) \le F(B)$



Zerlegung von B in $B \setminus A$ (B ohne A) und A (Vor.)

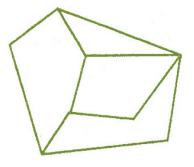
$$\Rightarrow F(B) = F(A) + F(B \backslash A)$$
 (M2)

q.e.d.

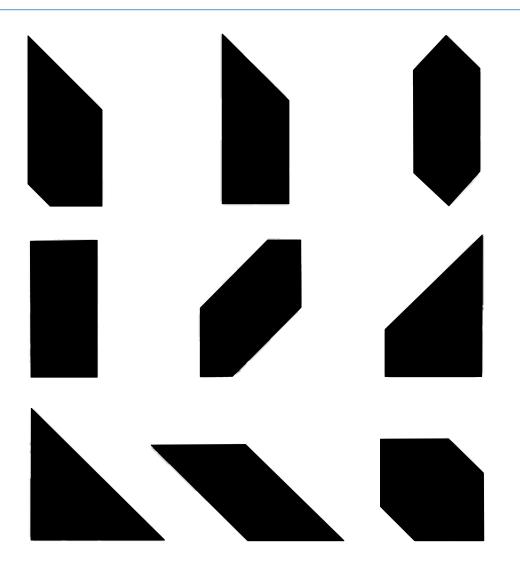
Definition 4.2

Die Vereinigungsmenge von endlich vielen* Polygonen P_i heißt **Zerlegung** eines äußeren Polygons P, wenn gilt:

- 1) Zwei verschiedene Polygone haben keine inneren Punkte gemeinsam.
- Zwei Polygone, die nicht disjunkt sind, haben nur Ecken oder Seiten gemeinsam (höchstens Randpunkte).
- B) Die Seiten, die jeweils nur zu einem der Polygone gehören, bilden zusammen das **äußere* Polygon** *P*.

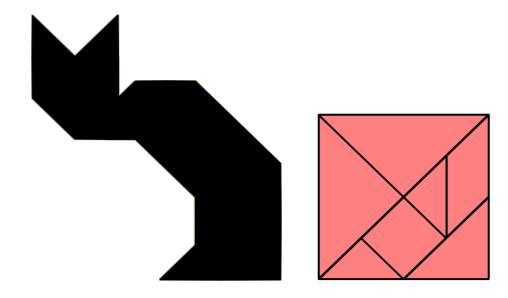


Zerlegungsgleiche Polygone



Definition 4.3

Zwei Polygone P und Q heißen **zerlegungsgleich**, wenn sie sich so in gleichviele Teilpolygone $P_1, P_2, P_3 \dots P_n$ und $Q_1, Q_2, Q_3 \dots Q_n$ zerlegen lassen, dass sich jedem Teilpolygon P_i ein zu diesem kongruentes Teilpolygon Q_j eindeutig und umkehrbar zuordnen lässt.



Ergänzungsgleiche Polygone

Didaktik der Mathematik Sekundarstufen

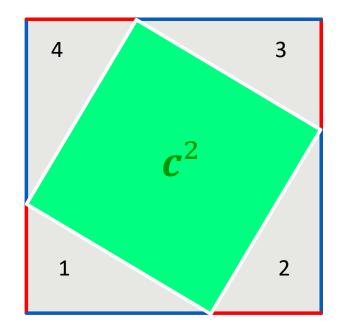
Definition 4.4

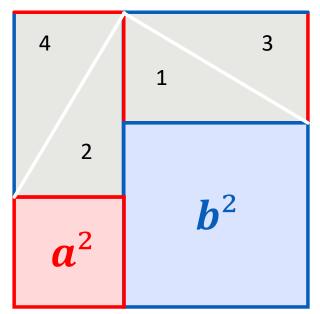
Zwei Polygone P und Q heißen **ergänzungsgleich**, wenn zu P und Q endlich viele, paarweise zerlegungsgleiche Polygone P_i und Q_j so hinzufügen lassen, dass P und P_i bzw. Q und Q_j jeweils eine Zerlegung bilden und die beiden Gesamtpolygone zerlegungsgleich sind.

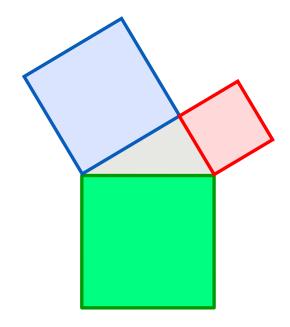
Ergänzungsgleiche Polygone

Definition 4.4

Zwei Polygone P und Q heißen **ergänzungsgleich**, wenn zu P und Q endlich viele, paarweise zerlegungsgleiche Polygone P_i und Q_j so hinzufügen lassen, dass P und P_i bzw. Q und Q_i jeweils eine Zerlegung bilden und die beiden Gesamtpolygone zerlegungsgleich sind.



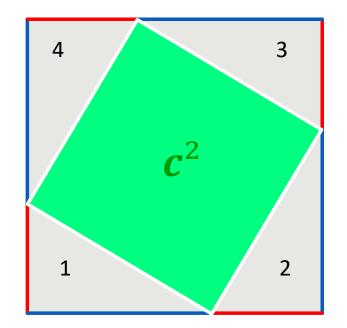


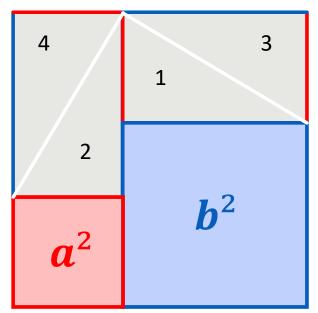


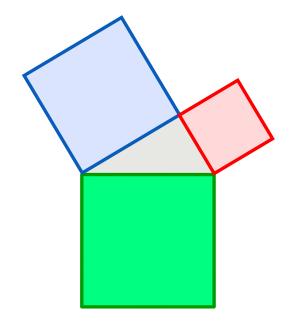
Satz des Pythagoras Ergänzungsgleichheit

Definition 4.4

Zwei Polygone P und Q heißen **ergänzungsgleich**, wenn zu P und Q endlich viele, paarweise zerlegungsgleiche Polygone P_i und Q_j so hinzufügen lassen, dass P und P_i bzw. Q und Q_i jeweils eine Zerlegung bilden und die beiden Gesamtpolygone zerlegungsgleich sind.







Zerlegungs-, ergänzungs- und inhaltsgleich

Präsenzübung

Beweisskizze

zu Satz 4.2 b)

Satz 4.2

- a) Zerlegungsgleiche Polygone sind inhaltsgleich.
- b) Ergänzungsgleiche Polygone sind inhaltsgleich.
- c) Inhaltsgleiche Polygone sind stets auch zerlegungs- und ergänzungsgleich.

Beweisskizze zu a):

Sei A_1 , A_2 , A_3 ... A_n eine Zerlegung von A und B_1 , B_2 , B_3 ... B_n eine Zerlegung von B

Voraussetzung: $A = A_1 \cup A_2 \cup A_3 \cup \cdots \cup A_n$ und $B = B_1 \cup B_2 \cup B_3 \cup \cdots \cup B_n$

mit $A_i \cap A_j = \{Randpunkte\}$ und $B_i \cap B_j = \{Randpunkte\} \ \forall \ i, j = 1 \dots n \ i \neq j$

o. B. d. A sei $A_1 \cong B_1, A_2 \cong B_2, A_3 \cong B_3 \dots A_n \cong B_n$

Zu zeigen:

$$F(A) = F(B)$$

$$F(A_1) = F(B_1) \dots F(A_n) = F(B_n)$$

Betrachte $A_1 \cup A_2$ und $B_1 \cup B_2$:

$$\rightarrow F(A_1 \cup A_2) = F(A_1) + F(A_2) = F(B_1) + F(B_2) = F(B_1 \cup B_2)$$

Betrachte $(A_1 \cup A_2) \cup A_3$ und $(B_1 \cup B_2) \cup B_3$:

$$F((A_1 \cup A_2) \cup (A_3)) = F(A_1) + F(A_2) + F(A_3) = F(B_1) + F(B_2) + F(B_3) = F((B_1 \cup B_2) \cup B_3)$$

...

$$F(A) = F((A_1 \cup A_2 \cup A_3 \cup \dots) \cup A_n) = F(A_1) + F(A_2) + F(A_3) + \dots + F(A_n)$$

$$= F(B_1) + F(B_2) + F(B_3) + \dots + F(B_n) = F((B_1 \cup B_2 \cup B_3 \cup$$

$$= F(B_1) + F(B_2) + F(B_3) + \dots + F(B_n) = F(B_1 \cup B_2 \cup B_3 \cup \dots) \cup B_n = F(B)$$
 (M2)

q.e.d.

RPTU

(Vor., M4)

(M2)

(M2)

4 Flächeninhalte

- 4.1 Reelle Maßfunktion
- 4.2 Flächeninhalte von Rechtecken
- 4.3 Flächeninhalte von Polygonen
- 4.4 Flächeninhalt und Umfang von Kreisen
- 4.5 Ausblick Rauminhalte

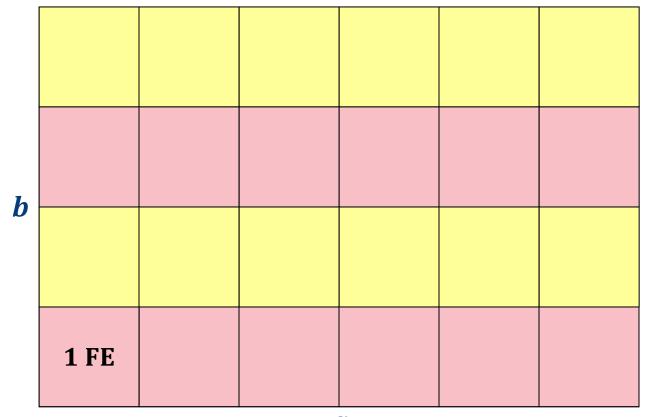
RPTU

juergen-roth.de/lehre/m4b-geometrie/

Flächenmessung

Rechtecktsflächeninhalt $(a, b \in \mathbb{N})$

- Lückenlos und überschneidungsfrei auslegen mit Einheitsquadraten
- b Reihen zu je a Einheitsquadraten $\rightarrow A = a \cdot b$



Maßfunktion:

F(A) = Anzahl Einheitsquadrate

Überprüfung: Erfüllt das Vorgehen die Eigenschaften aus Def. 4.1?

(M1) $Anzahl \ge 0$

(M2) Anzahlen addieren sich

(M3) Anzahl (Einheitsquadrat) = 1

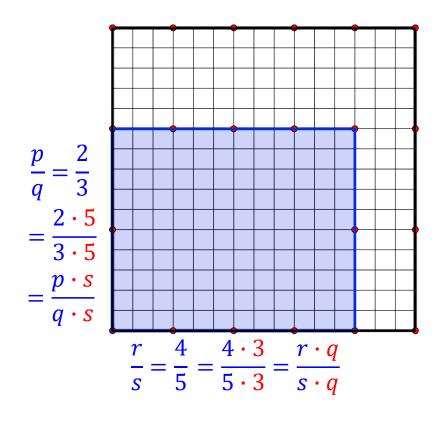
(M4) kongruente Figuren:

Auslegung in gleicher Weise

Rechtecksflächeninhalt $\left(\frac{p}{q}, \frac{r}{s} \in \mathbb{Q}^+\right)$

Idee

- Ein Rechteck mit den Kantenlängen $\frac{p}{q}$, $\frac{r}{s} \in \mathbb{Q}$ lässt sich nicht mit Einheitsquadraten auslegen.
- Verfeinern der Einteilung beider Kantenlängen führt zu $\frac{p \cdot s}{q \cdot s}$, $\frac{r \cdot q}{s \cdot q} \in \mathbb{Q}$.
- In das Einheitsquadrat passen folglich $(q \cdot s) \cdot (q \cdot s) = (q \cdot s)^2$ kleine Teilquadrate. Im Beispiel: $(3 \cdot 5) \cdot (3 \cdot 5) = (3 \cdot 5)^2 = 15^2 = 225$
- Ein Teilquadrat besitzt also den Flächeninhalt $\frac{1}{(q \cdot s)^2}$ FE $= \frac{1}{225}$ FE.



Flächenmessung

• Auslegen mit Teilquadraten ergibt $p \cdot s$ Zeilen mit je $r \cdot q$ Quadraten.

•
$$A = (p \cdot s) \cdot (r \cdot q) \cdot \frac{1}{(q \cdot s)^2} = \frac{(p \cdot s) \cdot (r \cdot q)}{(q \cdot s)^2} = \frac{p \cdot s \cdot r \cdot q}{q \cdot s \cdot q \cdot s} = \frac{p \cdot r}{q \cdot s} = \frac{p}{q} \cdot \frac{r}{s}$$

Rechtecksflächeninhalt $(a, b \in \mathbb{R}^+)$

Inkommensurabilität

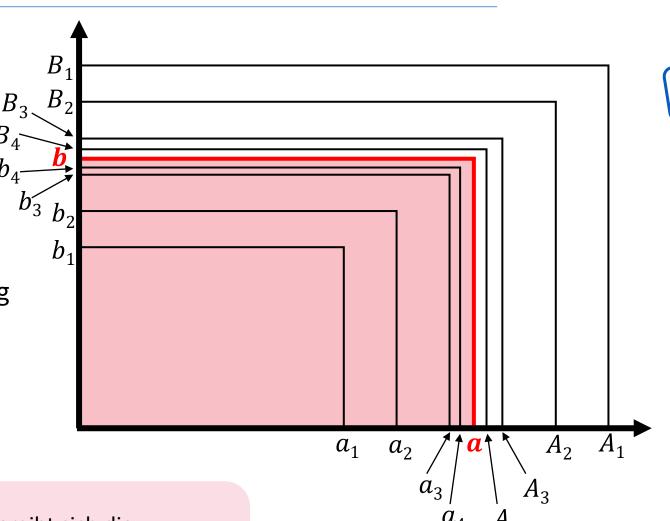
$$a = \{[a_n; A_n]\}$$

$$b = \{[b_n; B_n]\}$$

$$mit$$

$$a_n, b_n, An, B_n \in \mathbb{Q}^+$$

$$\Rightarrow \{[a_n b_n; A_n B_n]\} = a \cdot b$$
ist eine Intervallschachtellung
für den Flächeninhalt



Satz 4.3

Für den Flächeninhalt F des Rechtecks R ergibt sich die multiplikative Vorschrift $F(R) = a \cdot b$ wobei a und b die Längen der beiden Rechteckseiten beschreiben $(a, b \in \mathbb{R})$.

4 Flächeninhalte

- 4.1 Reelle Maßfunktion
- 4.2 Flächeninhalte von Rechtecken
- 4.3 Flächeninhalte von Polygonen
- 4.4 Flächeninhalt und Umfang von Kreisen
- 4.5 Ausblick Rauminhalte

RPTU

juergen-roth.de/lehre/m4b-geometrie/

Parallelogramm

Ergänzungsgleichheit (nach Satz 3.2 b)

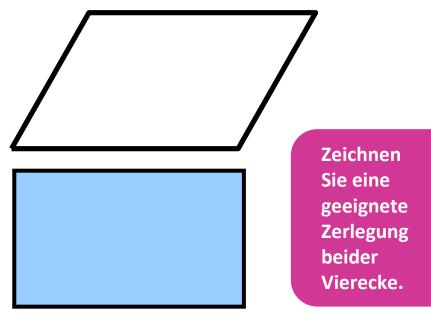
- Parallelogramm mit Polygonen ergänzen
- Rechteck mit dazu kongruenten Polygonen ergänzen
- Zwei kongruente Gesamtflächen entstehen
- Nach Satz 3.2 b) sind die Flächeninhalte der Ausgangsfiguren gleich.

Zerlegungsgleichheit (nach Satz 3.2 a)

- Parallelogramm in Polygone zerlegen
- Rechteck in dazu kongruente Polygone zerlegen
- Nach Satz 3.2 a) sind die Flächeninhalte der Ausgangsfiguren gleich.

Satz 4.4

Der Flächeninhalt F eines Parallelogramms P mit den Seitenlängen a und b berechnet sich als $F(P) = a \cdot h_a = b \cdot h_b$ wobei h_a die Höhe auf der Seite a und a die Höhe auf der Seite a bezeichnen.



RPTU

Flächeninhaltsgleiche Parallelogramme

Satz 4.5

Parallelogramme, die in der Länge einer Seite und der zugehörigen Höhe übereinstimmen sind zerlegungsgleich.

Beweisidee:

Fallunterscheidung:

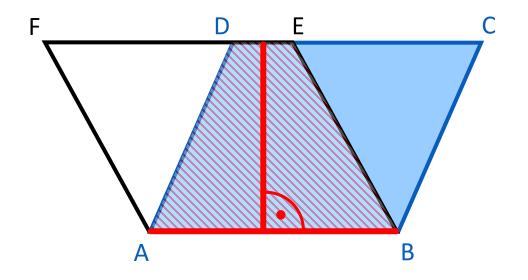
1. Fall: $[CD] \cap [EF] \neq \emptyset$

P(ABDE) Teilpolygon von ABCD und ABEF

 $\triangle ADF \cong \triangle BCE$

ABCD und ABEF sind zerlegungsgleich

$$F(ABCD) = F(ABEF)$$
 (Satz 4.3 a))



Flächeninhaltsgleiche Parallelogramme

Satz 4.5

Parallelogramme, die in der Länge einer Seite und der zugehörigen Höhe übereinstimmen sind zerlegungsgleich.

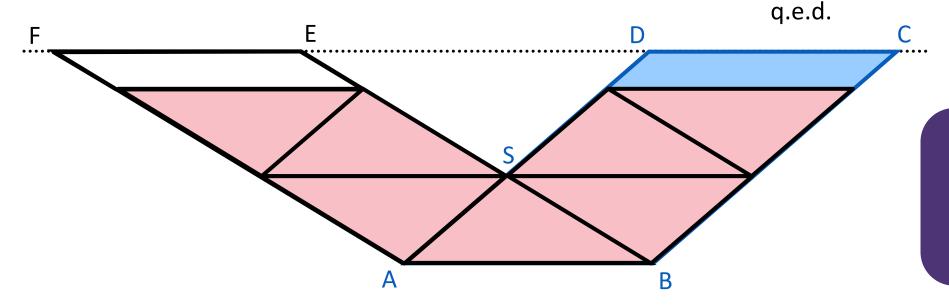
2. Fall:
$$[CD] \cap [EF] = \emptyset$$

Mehrfache Punktspiegelung ΔABS an Seitenmitten

Für kleine Restparallelogramme analog 1. Fall.

ABCD und ABEF sind zerlegungsgleich

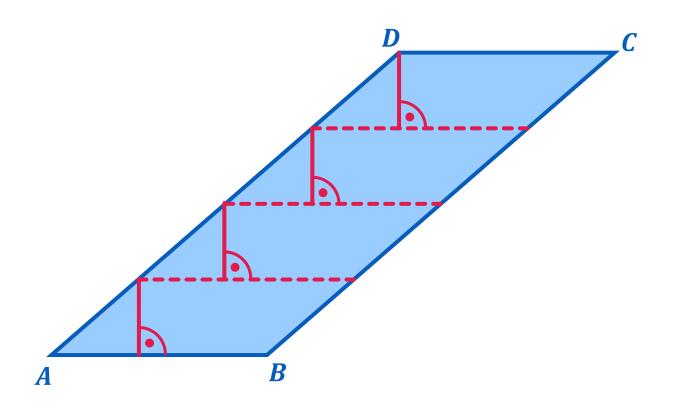
$$F(ABCD) = F(ABEF)$$
 (Satz 4.3 a))



Damit auch zerlegungsgleich zu Rechteck mit den Seitenlängen \overline{AB} und h_{AB}

→ Bew. Satz 4.4

Parallelogramm



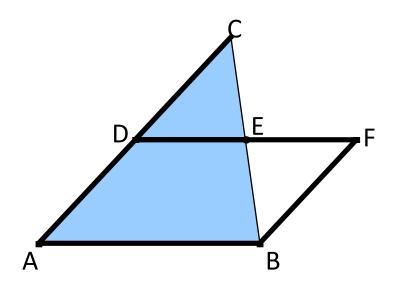
Dreieck

Zerlegungsleich zu Parallelogramm

- Konstruiere \overline{DE} als Mittelparallele zu \overline{AB} (s. Beweisfigur Satz 3.10)
- Parallele zu *AD* schneidet diese in *F*
- Kongruente Dreiecke $\Delta CDE \cong \Delta BEF$
- Kongruente Restpolygone (Identität) P(ABDE)
- \blacksquare $\triangle ABC$ und ABDF zerlegungsgleich

Satz 4.6

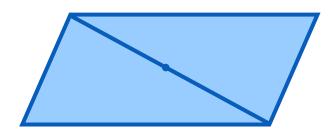
Zu jedem Dreieck existiert ein zerlegungsgleiches Parallelogramm, das mit dem Dreieck in einer wählbaren Seite übereinstimmt.



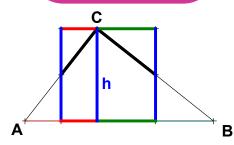
Dreieck

Zu Parallelogramm ergänzen

- Punktspiegelung an einer Seitenmitte→ Parallelogramm
- Parallelogramm besitzt Seite und zugehörige Höhe des Dreiecks
- Flächeninhalt durch Spiegelung verdoppelt (M2,4)

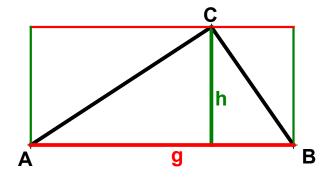


Beschreiben Sie das Vorgehen zur Flächenberechnung mithilfe dieser dritten Figur:



Zu Rechteck ergänzen

- Höhe zu längster Seite einzeichnen→ zwei rechtwinklige Teildreiecke
- Punktspiegelung der Teildreiecke an der Seitenmitte der Hypotenuse
- Flächeninhalt durch Spiegelung verdoppelt (M2,4)



Satz 4.7

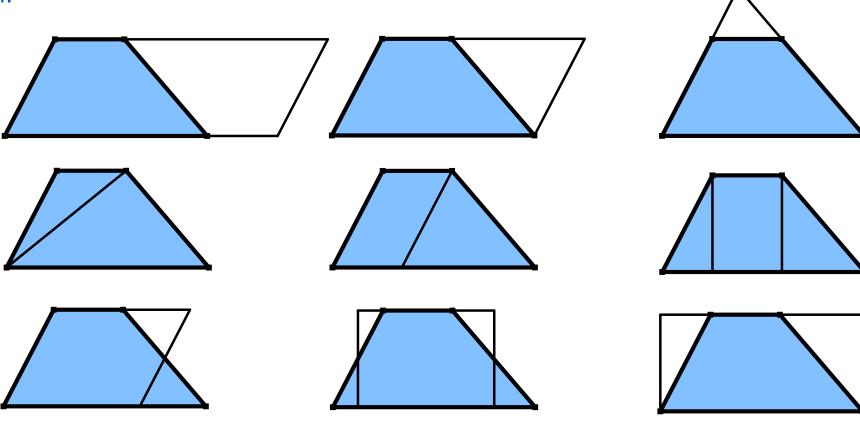
Der Flächeninhalt F eines Dreiecks mit den Seitenlängen a, b und c berechnet sich zu $F(D) = \frac{1}{2}a \cdot h_a = \frac{1}{2}b \cdot h_b = \frac{1}{2}c \cdot h_c$, wobei h_a die Höhe auf der Seite a, h_b die auf b und h_c die auf c bezeichnen.

Flächeninhaltsbestimmung beim Trapez

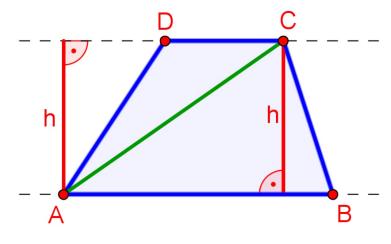
Satz 4.8

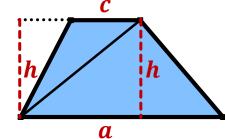
Der Flächeninhalt F eines Trapezes mit den Seitenlängen a und c (der parallelen Seiten) und der Länge der Höhe h (Abstand der Trägergeraden der parallelen Seiten) berechnet sich zu $F(T) = \frac{1}{2}(a+c) \cdot h$.

Beweisideen:



Beweis zu Flächeninhalt des Trapezes





$$A_{Trapez} = A_{Dreieck_1} + A_{Dreieck_2}$$
$$= \frac{1}{2} \mathbf{c} \cdot \mathbf{h} + \frac{1}{2} \mathbf{a} \cdot \mathbf{h}$$
$$= \frac{\mathbf{a} + \mathbf{c}}{2} \cdot \mathbf{h}$$

Beweis zu Satz 4.8:

Voraussetzung: $\underline{h} = d(\overline{AB}, \overline{CD})$

 $\overline{AB} \parallel \overline{CD}$

Zu zeigen: $F(ABCD) = \frac{1}{2} \cdot (|\overline{AB}| + |\overline{DC}|) \cdot h$

Zerlegung in Teildreiecke ΔADC und ΔABC

Betrachte $\triangle ADC$:

Höhe $h_{DC} = h$

 $\Rightarrow F(\Delta ADC) = \frac{1}{2} \cdot |\overline{DC}| \cdot h_{DC} = \frac{1}{2} \cdot |\overline{DC}| \cdot h$

(Vor.)

(Vor., Satz 4.6)

Betrachte $\triangle ABC$:

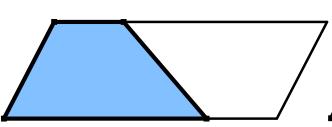
Höhe $h_{AB} = h$

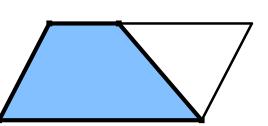
 $\rightarrow F(\Delta ABC) = \frac{1}{2} \cdot |\overline{AB}| \cdot h_{AB} = \frac{1}{2} \cdot |\overline{AB}| \cdot h$

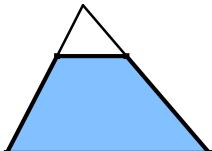
(Vor.)

(Vor., Satz 4.6)

Weitere Beweisskizzen





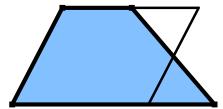


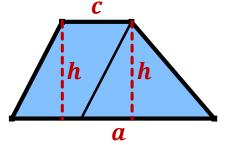
$$A_{Trapez} = A_{Parallelogramm} + A_{Dreieck}$$

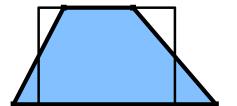
$$= \mathbf{c} \cdot \mathbf{h} + \frac{1}{2}(\mathbf{a} - \mathbf{c}) \cdot \mathbf{h}$$

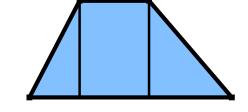
$$= \mathbf{c} \cdot \mathbf{h} + \frac{1}{2}\mathbf{a} \cdot \mathbf{h} - \frac{1}{2}\mathbf{c} \cdot \mathbf{h}$$

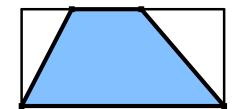
$$= \frac{1}{2}\boldsymbol{a} \cdot \boldsymbol{h} + \frac{1}{2}\boldsymbol{c} \cdot \boldsymbol{h} = \frac{\boldsymbol{a} + \boldsymbol{c}}{2} \cdot \boldsymbol{h}$$



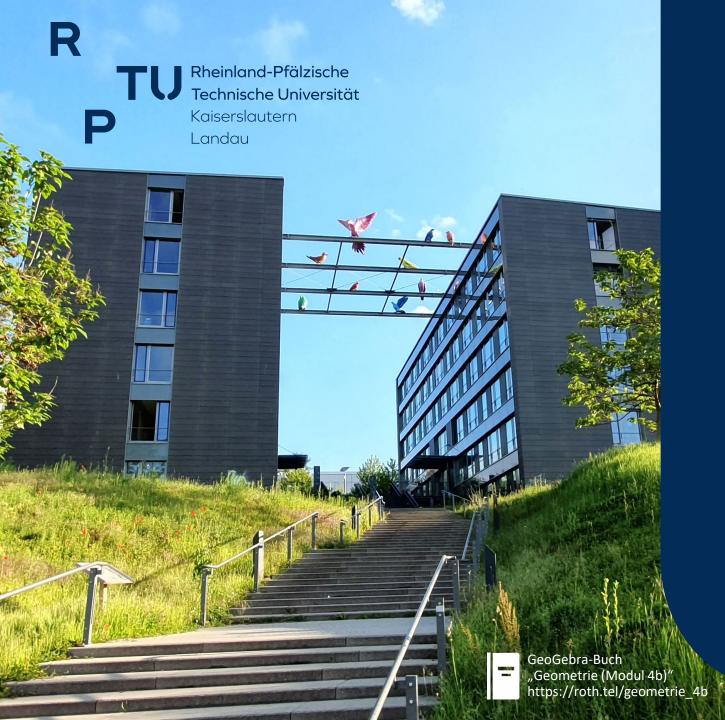








- a) Notieren Sie zu dem Beispiel links einen formalen Beweis.
- b) Notieren Sie zu möglichst vielen der weiteren Figuren eine Beweisskizze bzw. einen Beweis.



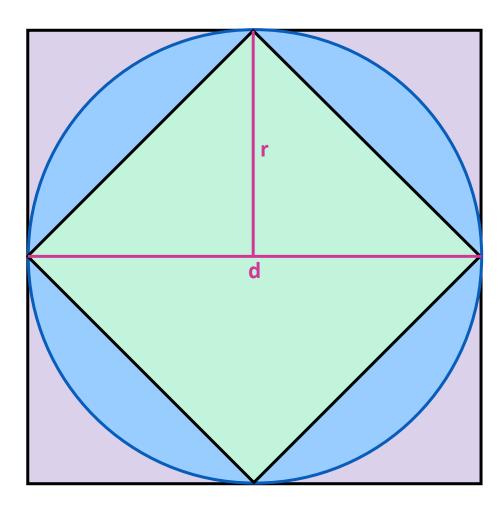
4 Flächeninhalte

- 4.1 Reelle Maßfunktion
- 4.2 Flächeninhalte von Rechtecken
- 4.3 Flächeninhalte von Polygonen
- 4.4 Flächeninhalt und Umfang von Kreisen
- 4.5 Ausblick Rauminhalte

RPTU

juergen-roth.de/lehre/m4b-geometrie/

Kreisumfang und Kreisinhalt



Kreisumfang $U\cong$

Kreisinhalt $A \cong$

Erste Abschätzung

Vergleichsfiguren:

- das dem Kreis einbeschriebene Quadrat
- das dem Kreis umbeschriebene Quadrat

einbeschriebenes Quadrat < Kreis < umbeschriebenes Quadrat

Seitenlänge Seitenlänge

Umfang Umfang

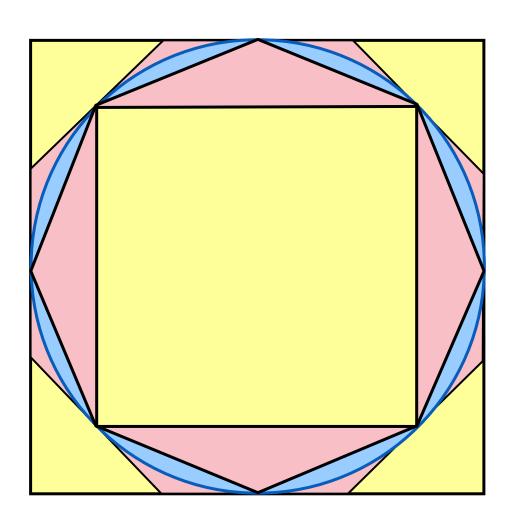
Flächeninhalt Flächeninhalt

Abschätzungen

< Kreisumfang <</pre>

< Kreisinhalt <

Kreisinhaltsbestimmung



Eingrenzung durch regelmäßige Vielecke

Archimedes von Syrakus

- Einschachtelung durch ein- und umbeschriebene regelmäßige Vielecke
- Verdoppelung der Eckenanzahlen

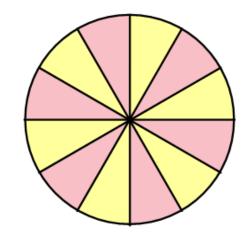
Berechnung von Umfang und Flächeninhalt rekursiv

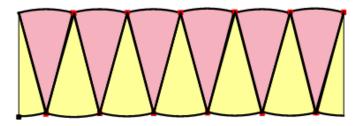
→ Anwendung in Kapitel 6 Satzgruppe des Pythagoras

Kreisinhaltsbestimmung

Kreis als Grenzfall von regelmäßigen n-Ecken

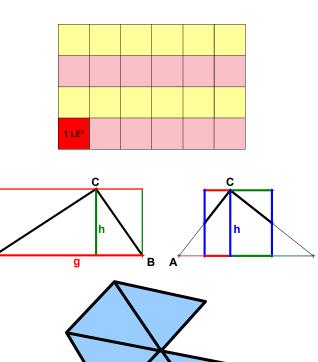
- n-Eck in n gleichschenklige Dreiecke zerteilen
- nebeneinander aufreihen
- Hälfte der Dreiecke umsortieren
- ein Dreieck am Rand halbieren
 (in zwei rechtwinklige Teildreiecke)
- am anderen Rand anlegen
- Rechteck mit den Seitenlängen ...





https://www.geogebra.org/m/cQHqmekc#chapter/1938

Flächeninhaltsbestimmung



Flächenmessung, d. h. Auslegen mit
 Einheitsquadraten (bzw. Intervallschachtelung)

Dreieck

Flächenvergleich mit dem Rechteck

Polygon

Triangulierung (Einteilen in Dreiecke)

Kreis

Intervallschachtelung

Flächeninhalt der Antarktis

PISA-Aufgabe

Schätze die Fläche der Antarktis, indem du den Maßstab der Karte benutzt.

Schreibe deine Rechnung auf und erkläre, wie du zu deiner Schätzung gekommen bist.

(Du kannst in der Karte zeichnen, wenn dir das bei deiner Schätzung hilft.)

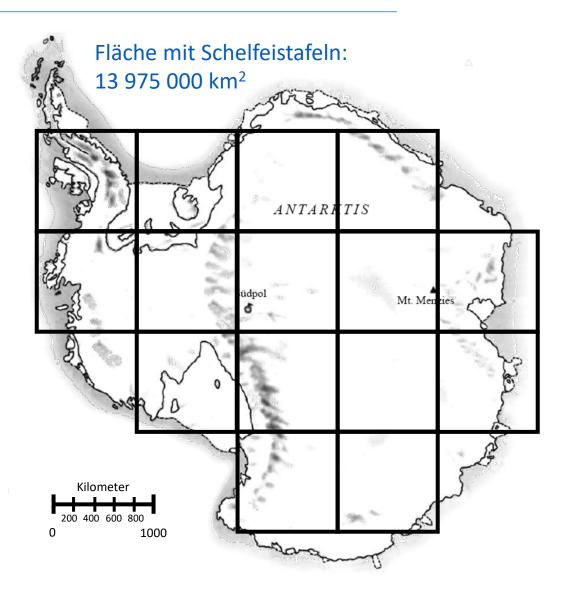
Idee: "Auslegen" mit Einheitsquadraten

PISA-Aufgabe

Schätze die Fläche der Antarktis, indem du den Maßstab der Karte benutzt.

Schreibe deine Rechnung auf und erkläre, wie du zu deiner Schätzung gekommen bist.

(Du kannst in der Karte zeichnen, wenn dir das bei deiner Schätzung hilft.)



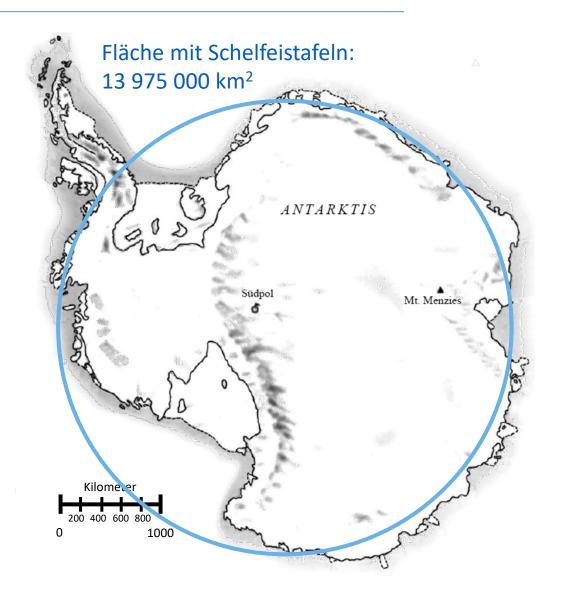
Idee: Vergleichen mit einer einfachen Fläche

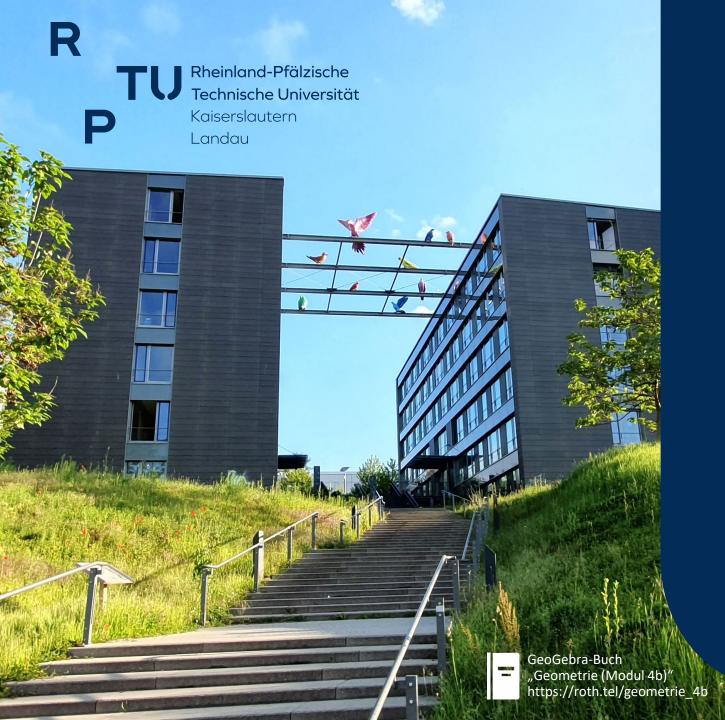
PISA-Aufgabe

Schätze die Fläche der Antarktis, indem du den Maßstab der Karte benutzt.

Schreibe deine Rechnung auf und erkläre, wie du zu deiner Schätzung gekommen bist.

(Du kannst in der Karte zeichnen, wenn dir das bei deiner Schätzung hilft.)





4 Flächeninhalte

- 4.1 Reelle Maßfunktion
- 4.2 Flächeninhalte von Rechtecken
- 4.3 Flächeninhalte von Polygonen
- 4.4 Flächeninhalt und Umfang von Kreisen
- 4.5 Ausblick Rauminhalte

RPTU

juergen-roth.de/lehre/m4b-geometrie/

Rauminhalt als reelle Maßfunktion

Definition 4.5

Man definiert analog zur Flächenfunktion im \mathbb{R}^3 für Polyeder (bestimmte Teilmengen des \mathbb{R}^3):

Die Funktion V, die jedem Polyeder einen reellen Zahlenwert als Rauminhaltsmaßzahl zuordnet, heißt Rauminhaltsfunktion.

Sie muss folgende Forderungen erfüllen:

- (M1) Nichtnegativität: Für jedes Polyeder A gilt $V(A) \ge 0$.
- (M2) Additivität: Für alle Polyeder A, B gilt: Wenn A und B keine inneren Punkte gemeinsam haben (also höchstens Randpunkte), dann gilt: $V(A \cup B) = V(A) + V(B)$
- (M3) Normierung: Für den fest definierten Einheitswürfel W mit der Kantenlänge 1 gilt: F(W) = 1.
- (M4) Verträglichkeit mit der Kongruenz: Für alle Polyeder A, B gilt: Wenn A kongruent zu B ist, dann ist V(A) = V(B).

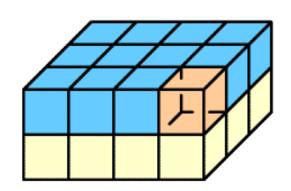
Figuren, die durch eine Kongruenzabbildung zur Deckung gebracht werden können, heißen kongruent.

Rauminhaltsbegriff

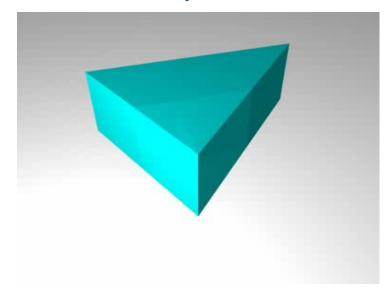
Videos aus: www.madin.net → Grundbegriffe der Geometrie

Herleitung

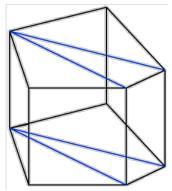
- Weitgehend analog zum Flächeninhaltsbegriff
- Aber: Satz von Dehn beachten!
- Satz von Dehn (vgl. Text!)
 - Zwei rauminhaltsgleiche Polyeder sind im Allgemeinen weder zerlegungs- noch ergänzungsgleich.
- Quadervolumen



Volumen Dreiecksprisma



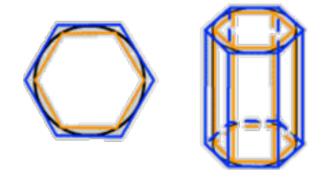
Volumen gerades Prisma

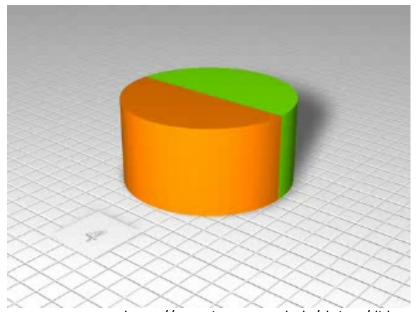


Rauminhaltsbegriff

Videos aus: www.madin.net → Grundbegriffe der Geometrie

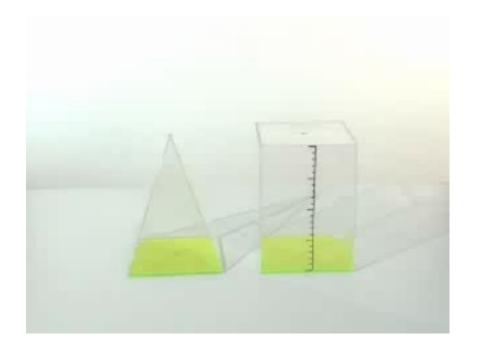
Zylindervolumen





Pyramidenvolumen

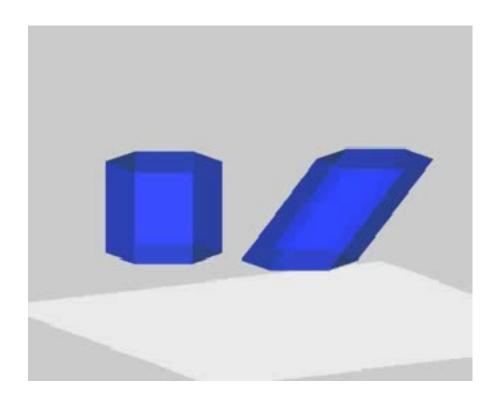
Vgl. Text!



Rauminhaltsbegriff

Videos aus: www.madin.net → Grundbegriffe der Geometrie

- Satz von Cavalieri (vgl. Text!)
 - Zwei Körper gleicher Höhe sind volumengleich, wenn sie in jeweils gleicher Höhe flächen-gleiche Querschnitte haben.

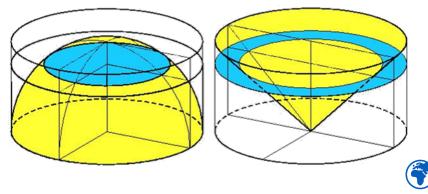


Text lesen!

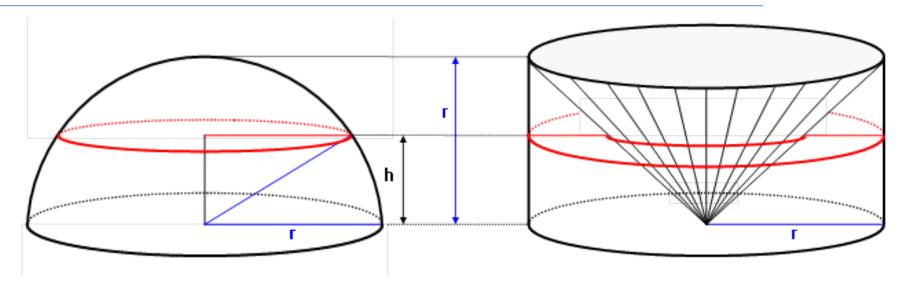
- Prinzip von Cavalieri
- Satz von Dehn
- Volumen der Pyramide
- Kugelvolumen/Kugeloberfläche

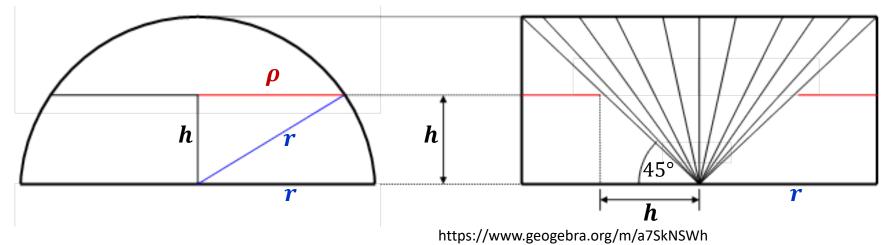
Kugelvolumen

 Herleitung über den Satz von Cavalieri (vgl. Text)



Kugelvolumen





Kugelvolumen

Es muss noch gezeigt werden, dass die Flächeninhalte der Schnittflächen in der Höhe h in beiden Körpern gleich groß sind.

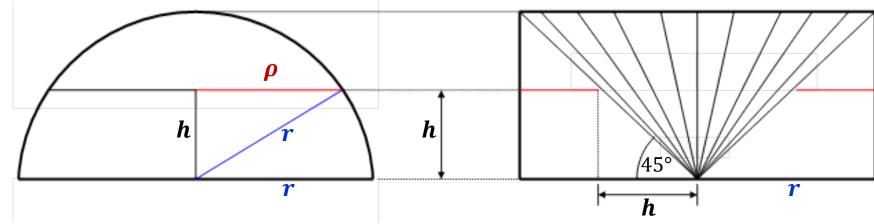
$$A_{\text{Schnittfläche}} = \rho^2 \cdot \pi$$
$$= (r^2 - h^2) \cdot \pi$$

$$A_{\text{Schnittfläche}} = r^2 \cdot \pi - h^2 \cdot \pi$$
$$= (r^2 - h^2) \cdot \pi$$

Nach dem Prinzip von Cavalieri gilt also:

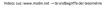
$$V_{\text{Halbkugel}} = V_{\text{Zylinder}} - V_{\text{Kegel}} = G \cdot r - \frac{1}{3} \cdot G \cdot r$$

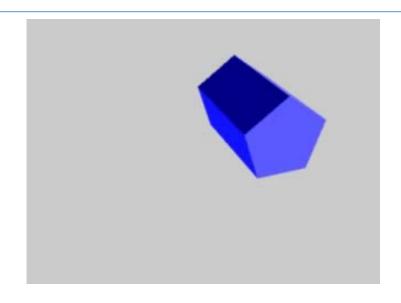
$$= \frac{2}{3} \cdot G \cdot r = \frac{2}{3} \cdot r^2 \pi \cdot r = \frac{2}{3} \cdot r^3 \pi \quad \Rightarrow \quad V_{\text{Kugel}} = \frac{4}{3} \cdot r^3 \pi$$

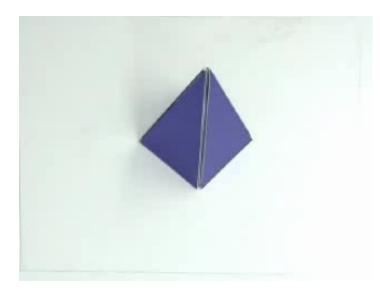


https://www.geogebra.org/m/a7SkNSWh

Exkurs: Netze von Körpern







Kontakt

Dr. Susanne Digel

RPTU

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Didaktik der Mathematik (Sekundarstufen) Fortstraße 7, 76829 Landau

s.digel@rptu.de

dms.nuw.rptu.de

