

Didaktik der Stochastik

Modul 12a/b

Jürgen Roth

15.03.2025 juergen-roth.de

Didaktik der Stochastik

- 1. Ziele und Inhalte
- 2. Beschreibende Statistik
- 3. Wahrscheinlichkeitsrechnung
- 4. Beurteilende Statistik

RPTU

Didaktik der Stochastik

Wahrscheinlichkeitsrechnung

KMK-Bildungsstandards für die Allgemeine Hochschulreife: Stochastik

Leitidee L2: Messen

- Lage- und Streumaße einer Stichprobe bestimmen und deuten
- Erwartungswert und Standardabweichung diskreter Zufallsgrößen bestimmen und deuten

Leitidee L4: Funktionaler Zusammenhang

 Zufallsgrößen und Wahrscheinlichkeitsverteilungen zur Beschreibung stochastischer Situationen nutzen

Leitidee L5: Daten und Zufall (Grundlegendes und erhöhtes Anforderungsniveau)

- exemplarisch statistische Erhebungen planen und beurteilen
- Sachverhalte mithilfe von Baumdiagrammen oder Vierfeldertafeln untersuchen und damit Problemstellungen im Kontext bedingter Wahrscheinlichkeiten lösen
- Teilvorgänge mehrstufiger Zufallsexperimente auf stochastische Unabhängigkeit anhand einfacher Beispiele untersuchen
- die Binomialverteilung und ihre Kenngrößen nutzen
- Simulationen zur Untersuchung stochastischer Situationen verwenden
- in einfachen Fällen aufgrund von Stichproben auf die Gesamtheit schließen

KMK-Bildungsstandards für die Allgemeine Hochschulreife: Stochastik

Leitidee L5: Daten und Zufall (Erhöhtes Anforderungsniveau)

- für binomialverteilte Zufallsgrößen Aussagen über die unbekannte Wahrscheinlichkeit sowie die Unsicherheit und Genauigkeit dieser Aussagen begründen (B1)
- Hypothesentests interpretieren und die Unsicherheit und Genauigkeit der Ergebnisse begründen (B2)
- exemplarisch diskrete und stetige Zufallsgrößen unterscheiden und die "Glockenform" als Grundvorstellung von normalverteilten Zufallsgrößen nutzen
- stochastische Situationen untersuchen, die zu annähernd normalverteilten Zufallsgrößen führen

Kapitel 3: Sekundarstufen Wahrscheinlichkeitsrechnung

- 3.1 Experimente 🖜
- 3.2 Stochastik und MMS 🖜
- 3.3 Grundbegriffe für diskrete Zufallsexperimente
- 3.4 Was ist Wahrscheinlichkeit?
- 3.5 Mehrstufige Zufallsexperimente **1**
- 3.6 Zählprinzipien (Kombinatorik) 🖜
- 3.7 Stochastische (Un-)Abhängigkeit und bedingte Wahrscheinlichkeit

juergen-roth.de/lehre/didaktik-der-stochastik

RPTU

Didaktik der Mathematik

Kapitel 3: Wahrscheinlichkeitsrechnung

- 3.1 Experimente
- 3.2 Stochastik und MMS
- 3.3 Grundbegriffe für diskrete Zufallsexperimente
- 3.4 Was ist Wahrscheinlichkeit?
- 3.5 Mehrstufige Zufallsexperimente
- 3.6 Zählprinzipien (Kombinatorik)
- 3.7 Stochastische (Un-)Abhängigkeit und bedingte Wahrscheinlichkeit

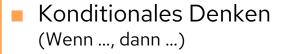
juergen-roth.de/lehre/didaktik-der-stochastik

RPTU

Kernideen im Fokus

bei Experimenten

- Konzept des Bezweifelns
- Modell (Wahrscheinlichkeit)↔ Realität (rel. Häufigkeit)
- aus Erfahrung wird Erwartung
- Repräsentative Stichprobe
- Wachsende Stichprobe→ reduziert Variabilität



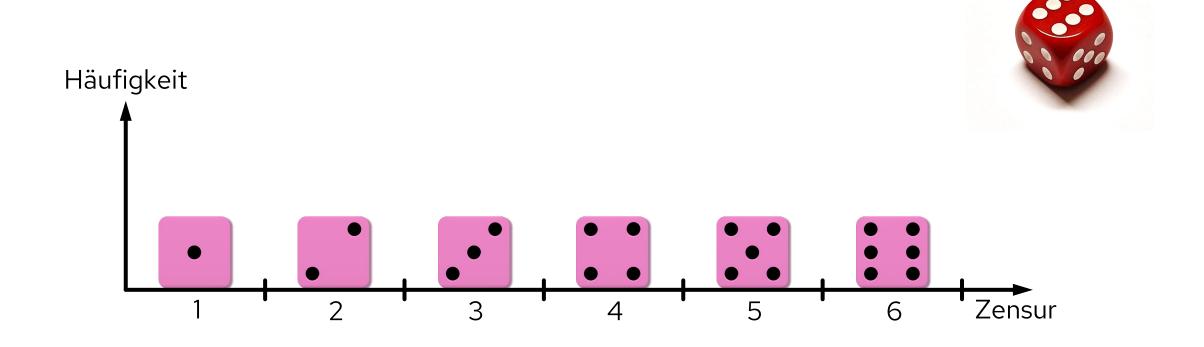
Kernidee
hypothetischprognostische
Wahrscheinlichkeit

- Struktur erfassen (Form, Streuung, Maximum, ...)
- Gesetz der großen Zahlen
- Sichtweise: lokal ↔ global

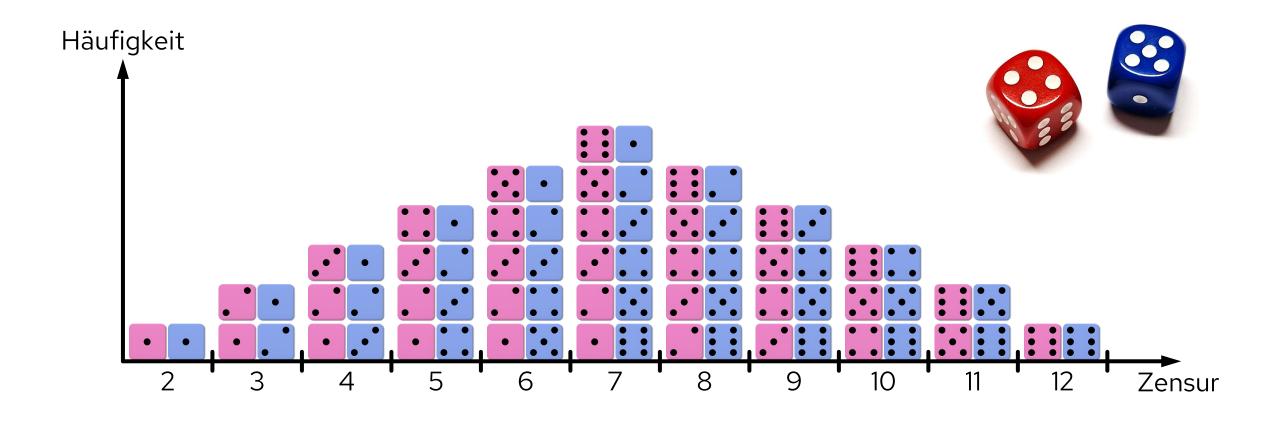
Kernidee Repräsentativität und Variabilität von Stichproben-Daten

Kernidee Verteilungen

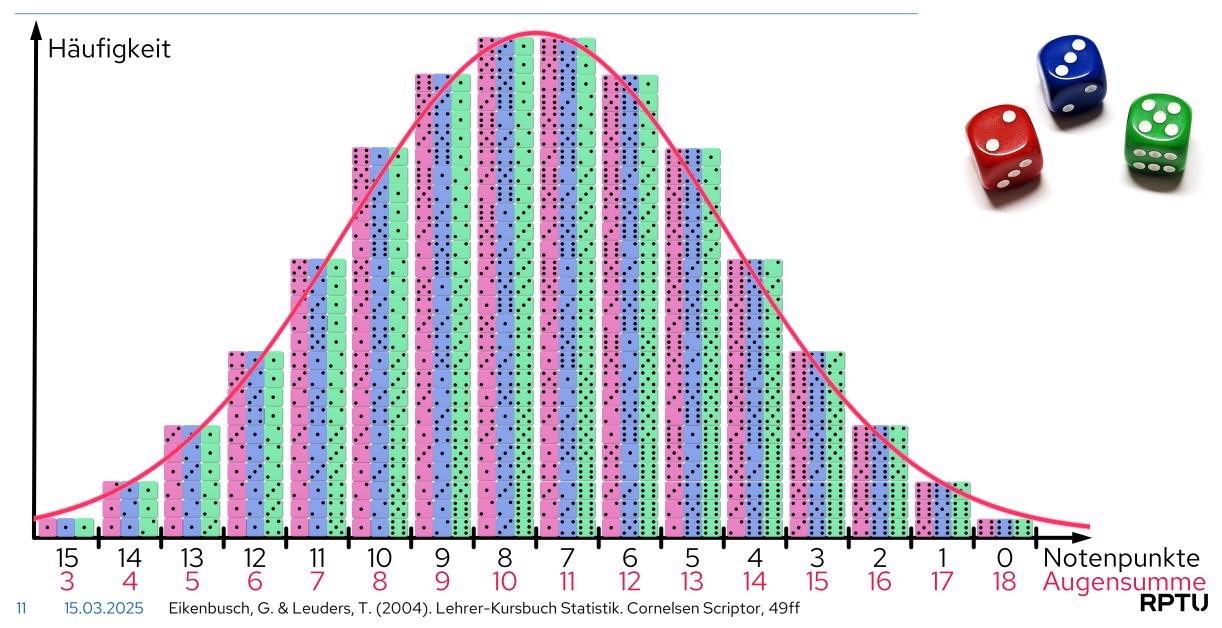
Noten würfeln?



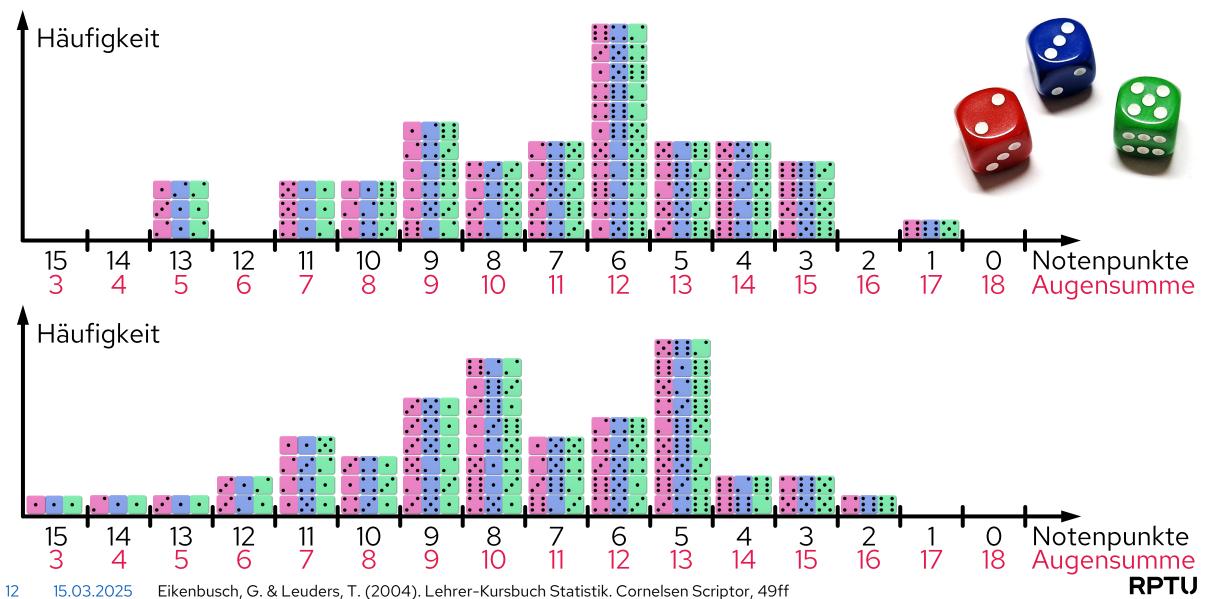
Noten würfeln?



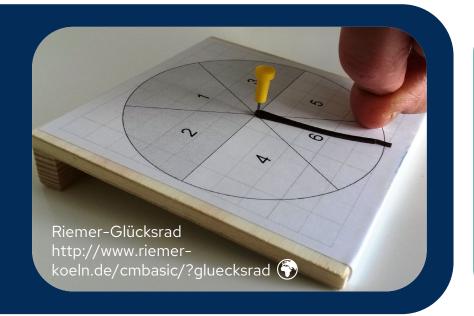
Noten würfeln?



Noten würfeln – Reale Würfelergebnisse bei jeweils 50 Würfen mit drei Würfeln



Zufallsgeräte



Riemer-Quader http://www.riemer-koeln.de/cmbasic/?quader

Kapitel 3: Wahrscheinlichkeitsrechnung

- 3.1 Experimente
- 3.2 Stochastik und MMS
- 3.3 Grundbegriffe für diskrete Zufallsexperimente
- 3.4 Was ist Wahrscheinlichkeit?
- 3.5 Mehrstufige Zufallsexperimente
- 3.6 Zählprinzipien (Kombinatorik)
- 3.7 Stochastische (Un-)Abhängigkeit und bedingte Wahrscheinlichkeit

juergen-roth.de/lehre/didaktik-der-stochastik

RPTU

Stochastik und Modulare Mathematik-Systeme (MMS)

Darstellende Statistik

- Diagramme
- dynamische Variation

Wahrscheinlichkeitsverteilungen

- realisieren
- variieren (Abhängigkeit von Parametern)

Zufallsexperimente

- auswerten
- simulieren
- Vierfeldertafeln (vgl. 3.7 Bedingte Wahrscheinlichkeit)
- Baumdiagramme

GeoGebra: Befehle zur Stochastik

Mittelwerte

- Modalwert
- Median
- arithmetisches Mittel
- geometrisches Mittel

Streuungsmaße

- Spannweite
- Quartilsabstand
- mittlere lineare Abweichung
- Varianz
- Standardabweichung

GeoGebra-Befehle für Mittelwerte

- Modalwert(<Liste von Daten (LvD)>)
- Median(<LvD>)
- Mittel(<LvD>)
- GeometrischerMittelwert(<LvD>)

TKP-Befehle für Streuungsmaße

- Max(<LvD>) Min(<LvD>)
- Quartil3(<LvD>) Quartil1(<LvD>)
- Mittelabw()
- Varianz(<LvD>) bzw. Stichprobenvarianz(<LvD>)
- Standardabweichung(<LvD>) bzw.StichprobenStandardabweichung(<LvD>)

GeoGebra: Befehle zur Stochastik

Zufallszahl

- Zufallszahl aus einem Bereich
- Binomialverteilte Zufallszahl
- Normalverteile Zufallszahl

Bedingung

■ Wenn, dann, sonst

Anzahl

Anzahl eines bestimmten Werts

Binomialkoeffizient

■ Berechnung von $\binom{n}{k}$

GeoGebra-Befehle für Zufallszahlen

- Zufallszahl(<Min>,<Max>)
- ZufallszahlBinomialverteilt(n, p)
- **Z**ufallszahlNormalverteilt(μ , σ)

GeoGebra-Befehl für Bedingungen

Wenn(<Bedingung>, <dann>, <sonst>)

GeoGebra-Befehl für Anzahlen

ZähleWenn(<Bedingung>, <LvD>)

GeoGebra-Befehl für $\binom{n}{k}$

 \blacksquare nCr(n, k)

GeoGebra: Befehle zur Stochastik

Balkendiagramm einer

- Binomialverteilung
- kumulierten Binomialverteilung

X ist B(n; p)-Zufallsvariable

- P(X=k)
- $P(x \le k)$

Normalverteilung

- Wahrscheinlichkeitsdichtefunktion
- kumulierte Verteilungsfunktion

Normalverteilung

 $\Phi^{-1}(p) \cdot \sigma + \mu$ Wert der $N(\mu; \sigma)$ -verteilten Zufallsgröße X, der zum gegebenen p-Wert gehört

GeoGebra-Befehle für Binomialverteilung

- Binomial(n, p, false)
- Binomial(n, p, true)

GeoGebra-Befehle Binomialverteilung

- Binomial(n, p, k, false)
- Binomial(n, p, k, true)

GeoGebra-Befehl für Normalverteilung

- Normal(μ , σ , x, false)
- Normal(μ , σ , x, true)

GeoGebra-Befehl für Normalverteilung

InversNormal(μ , σ , p)

Tabellenkalkulationsprogramm (TKP) Befehle zur Stochastik

Mittelwerte

- Modalwert
- Median
- arithmetisches Mittel
- geometrisches Mittel

Streuungsmaße

- Spannweite
- Quartilsabstand
- mittlere lineare Abweichung
- Varianz
- Standardabweichung

TKP-Befehle für Mittelwerte

- Modalwert()
- Median()
- Mittelwert()
- Geomittel()

TKP-Befehle für Streuungsmaße

- Max() Min()
- Quartile(;3) Quartile(;1)
- Mittelabw()
- Varianzen() GG bzw. Varianz() SP
- Stabwn() GG bzw. Stabw() SP

SP: Stichprobe

Tabellenkalkulationsprogramm (TKP) Befehle zur Stochastik

Zufallszahl

- Zufallszahl aus [0; 1[
- Zufallszahl aus einem Bereich

Bedingung

Wenn, dann, sonst

Anzahl

Anzahl bestimmen

15.03.2025

Anzahl eines bestimmten Werts

TKP-Befehle für Zufallszahlen

- Zufallszahl() neue Zufallszahlen: Taste F9
- Zufallsbereich(von; bis) (ganze Zahl)

TKP-Befehle für Bedingungen

Wenn(Bedingung; dann; sonst)

TKP-Befehle für Anzahlen

- Anzahl(Bereich)
- Zählenwenn(Bereich; Wert)

SP: Stichprobe

Beispiel: Geburtstagsparadoxon

Aufgabe

Wie groß ist die Wahrscheinlichkeit, dass in einer Klasse mit 24 Schüler/inne/n mindestens zwei am gleichen Tag Geburtstag haben?

Geburtstagsparadoxon

Befinden sich in einem Raum mindestens 23 Personen, dann ist die Chance, dass zwei oder mehr dieser Personen am gleichen Tag (ohne Beachtung des Jahrganges) Geburtstag haben, größer als 50 %.

Klasse 5a			
Schüler	Geburtstag	doppelt	
	135	doppelt 0 0	
2	230	0	
1 2 3 4 5 6	210	0 0	
4	253	0	
5	318	0	
6	161	0	
7	92	0	
8	45	0	
9	288	0	
10	143	0	
11	124	0	
12	219	0	
13	155	0	
14	9	0	
15	115	0	
16	230	0 1 0	
17	187	0	
18	89	0	
19	362	0	
20	96	0	
21	68	0	
22	66	0	
23	179	0	
24	74	0	

Klasse 5b			
Schüler	Geburtstag	doppelt	
1	245	0	
2	65	0	
3	66	0	
4	191	0	
5	200	0	
6	67	0	
7	125	0	
8	364	0	
9	195	0	
10	283	0	
11	178	0	
12	107	0	
13	21	0	
14	58	0	
15	90	0	
16	36	0	
17	335	0	
18	19	0	
19	253	0	
20	125	0 1 0	
21	148	0	
22	357	0	
23	125	0 2 1	
24	21	1	

Klacca Sh

Klasse 5c			
Schüler	Geburtstag	doppelt	
1	277	0	
2	294	0	
1 2 3 4	129	0	
	34	0	
5 6	125	0	
6	163	0	
7	62	0	
8	162	0	
9	189	0 0 0 0 0 0 0 0 0	
10	21	0	
11	182	0	
12	254	0	
13 14	246	0 1 0 0 0	
14	129	1	
15	136	0	
16	262	0	
17	156	0	
18	171	0	
19	79	0	
20	227	0	
21	179	0 0 0 0	
22	147	0	
23	98	0	
24	62	1	

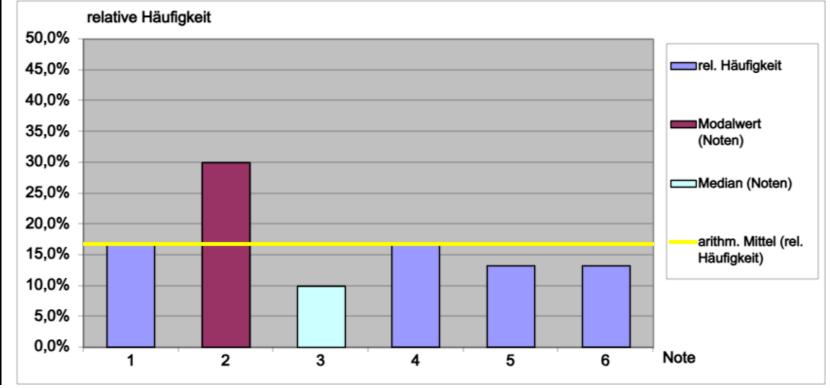
Beispiel-Simulation: Mittelwerte visualisieren

Schuler	Note
1	2
2	2
3	1
4	4
5	2
6	2
7	1
8	1
9	1
10	2
11	4
12	6
13	6
14	1
15	6
16	3
17	3
18	2
19	5
20	3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	2 2 1 4 2 2 1 1 1 2 4 6 6 1 6 3 3 2 5 3 6 4 2
22	4
23	2

Schüler Note

Mittelwerte	
Modalwert (Noten)	2,0
Median (Noten)	3,0
arithm. Mittel (Noten)	3,2
arithm. Mittel (rel. Häufigkeit)	16,7%
0,5	6,5
16,7%	16,7%

Note	rel. Häufigkeit	Median (Noten)	Modalwert (Noten)
1	16,7%	0,0%	0,0%
2	30,0%	0,0%	30,0%
3	10,0%	10,0%	0,0%
4	16,7%	0,0%	0,0%
5	13,3%	0,0%	0,0%
6	13,3%	0,0%	0,0%



Kapitel 3: Wahrscheinlichkeitsrechnung

- 3.1 Experimente
- 3.2 Stochastik und MMS
- 3.3 Grundbegriffe für diskrete Zufallsexperimente
- 3.4 Was ist Wahrscheinlichkeit?
- 3.5 Mehrstufige Zufallsexperimente
- 3.6 Zählprinzipien (Kombinatorik)
- 3.7 Stochastische (Un-)Abhängigkeit und bedingte Wahrscheinlichkeit

juergen-roth.de/lehre/didaktik-der-stochastik

RPTU

Kernideen im Fokus

bei Grundbegriffen für diskrete Zufallsexperiment

- Konzept des Bezweifelns
- Modell (Wahrscheinlichkeit) ← Realität (rel. Häufigkeit)
- aus Erfahrung wird Erwartung
- Repräsentative Stichprobe
- Wachsende Stichprobe → reduziert Variabilität

- Konditionales Denken (Wenn ..., dann ...)
- Schnitt-Wahrscheinlichkeit

Kernidee hypothetischprognostische Wahrscheinlichkeit

- Struktur erfassen (Form, Streuung, Maximum, ...)
- Gesetz der großen Zahlen
- Sichtweise: lokal ↔ global

Kernidee Repräsentativität und Variabilität von Stichproben-Daten

Kernidee Verteilungen

Lehrplan RLP: Leistungskurs

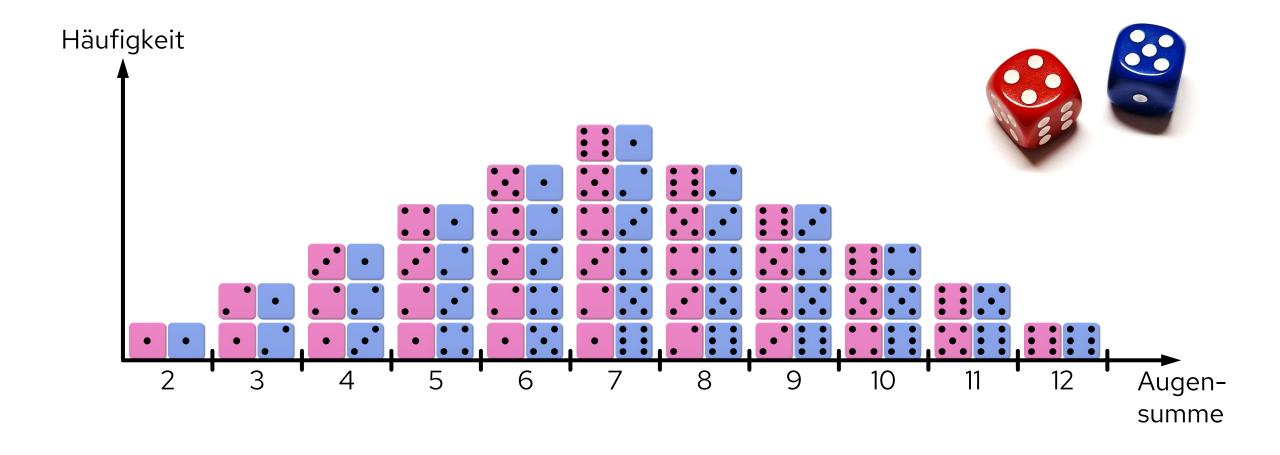
	Ziele / Inhalte (Sach- & Methodenkompetenz)	Hinweise zur Unterrichtsgestaltung und Methodenkompetenz
1.	Zufallsexperimente durch ihre Ergebnismengen beschreiben	

Lehrplan RLP: Grundkurs – Stochastik 1

		Hinweise zur Unterrichtsgestaltung und Methodenkompetenz
	Zufallsexperimente durch ihre Ergebnismengen beschreiben	

15.03.2025

Beispiel: Würfeln mit zwei Würfeln



Grund	begri	ffe a	m Be	ispi	e
Würfe	In mit	t zwei	Wür	feli	1

Ergebnis

Ereignis

Ereignismenge

Elementarereignis

Unmögliches Ereignis

Sicheres Ereignis

Unvereinbare

Gegenereignis

Und-Ereignis

Oder-Ereignis

Ereignisse

Ergebnismenge/-raum

(Menge aller Ergebnisse

des Zufallsexperiments)

Würfeln mit zwei Würfeln		3 8	P Seku
Begriff	Frläuterung		B

 $E_1 \cap E_2$

 $E_1 \cup E_2$

Möglicher Ausgang des Zufallsexperiments

Teilmenge von Ω

Potenzmenge $\wp(\Omega) := Menge aller Teilmengen von \Omega$

Einelementige Teilmenge von Ω $E = \Omega$

 $E = \emptyset = \{\}$

 $E_1, E_2 \subseteq \Omega \text{ mit } E_1 \cap E_2 = \emptyset$

 $\bar{E} = \Omega \backslash E$, Komplement von E

 $E(Mindestens eine 3) \cap E(AS gleich 4) = \{(1,3); (3,1)\}$

 $E(AS \text{ ist } 3) \cup E(AS \text{ ist } 11) = \{(1,2); (2,1); (5,6); (6,5)\}$

 $E(Augensumme (AS) größer als 1) = \Omega$

 $E(Augensumme ist 1) = \emptyset = \{\}$ $\{(1,1)\}, \{(6,6)\} \subseteq \Omega \text{ mit } \{(1,1)\} \cap \{(6,6)\} = \emptyset$ $\bar{E}(AS \text{ kleiner } 12) := \Omega \setminus E(AS \text{ kleiner } 12) = \{(6,6)\}$

 $\{(6,4)\}\subseteq\Omega$

 $\Omega = \{(1,1); (1,2); (2,1); (1,3); (2,2); (3,1); (1,4); (2,3); (3,2); (4,1); (1,5); (2,4); (2$ (3,3); (4,2); (5,1); (1,6); (2,5); (3,4); (4,3); (5,2); (6,1); (2,6); (3,5); (4,4);(5,3); (6,2); (3,6); (4,5); (5,4); (6,3); (4,6); (5,5); (6,4); (5,6); (6,5); (6,6)E(Augensumme ist 4) = {(1,3); (2,2); (3,1)} ⊆ Ω

Ergebnisraum vergröbern & verfeinern

Urnenexperiment

Aus einer Urne mit zwei roten und drei schwarzen Kugeln wird zweimal nacheinander gezogen.

Mögliche Ergebnismengen (-räume)

- (1) Die Reihenfolge der gezogenen Kugeln interessiert.
- (2) Es interessiert nur die Farbe der gezogenen Kugeln, aber nicht deren Reihenfolge.

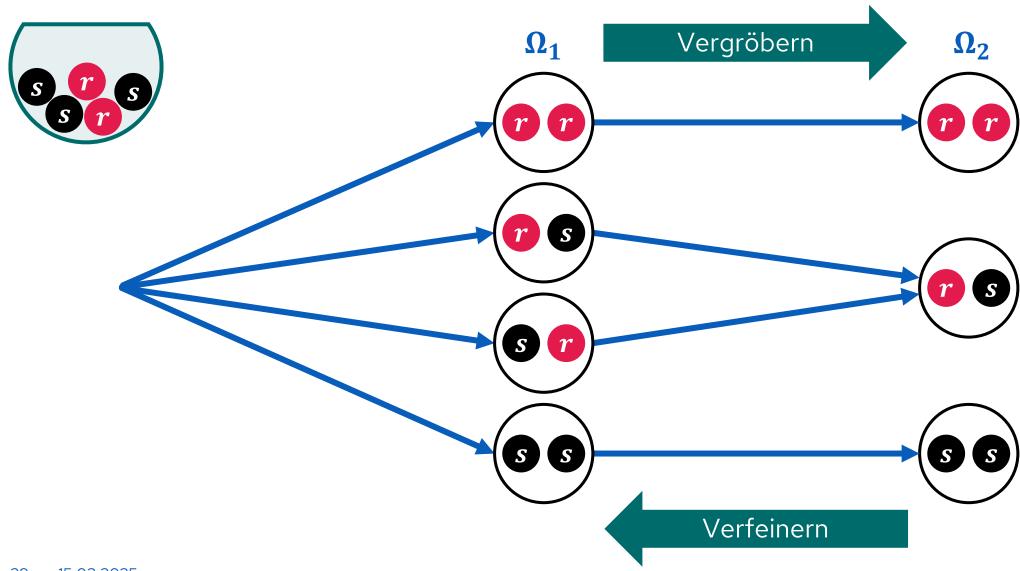
$$\Omega_1 = \{(r,r); (r,s); (s,r); (s,s)\}$$

$$\Omega_2 = \{rr, rs, ss\}$$

Anmerkung

Ein weiteres Kriterium für die Art der Darstellung eines Ergebnisraumes kann die Frage sein, ob die resultierenden Elementarereignisse gleichwahrscheinlich sein sollen oder nicht.

Ergebnisraum vergröbern & verfeinern



Verknüpfung von Ereignissen

Schreibweise	Ereignis	Bedeutung	Veranschaulichung im Venn-Diagramm
A	" A "	A tritt ein, wenn das Ergebnis eines der Elemente von A ist.	Ω
\overline{A}	"nicht A " "Gegenereignis zu A "	\overline{A} tritt ein, wenn A nicht eintritt.	Ω

Verknüpfung von Ereignissen

Schreibweise	Ereignis	Bedeutung	Veranschaulichung im Venn-Diagramm
$A \cup B$	" A oder B "	A∪B tritt ein, wenn A oder auch B eintritt.	Ω
$A \cap B$	" A und B "	$A \cap B$ tritt ein, wenn A und zu-gleich B eintritt.	$\bigcap_{A} \bigcap_{B}$

Verknüpfung von Ereignissen

Schreibweise	Ereignis	Bedeutung	Veranschaulichung im Venn-Diagramm
$\overline{A} \cap \overline{B} = \overline{A \cup B}$	"nicht A und nicht B "	$\overline{A} \cap \overline{B}$ tritt ein, wenn weder A noch B eintritt.	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$\overline{A} \cup \overline{B} = \overline{A \cap B}$	"nicht A oder nicht B "	$\overline{A} \cup \overline{B}$ tritt ein, wenn höchstens eines der beiden Ereignisse A und B eintritt.	Ω

Rechengesetze der Mengenalgebra

Kommutativität

- $\blacksquare A \cup B = B \cup A$
- $A \cap B = B \cap A$

Assoziativität

- $(A \cup B) \cup C = A \cup (B \cup C)$
- $(A \cap B) \cap C = A \cap (B \cap C)$

Distributivität

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Neutrales Element

- \blacksquare $A \cup \emptyset = A$
- $A \cap \Omega = A$

Dominantes Element

- $A \cup \Omega = \Omega$
- \blacksquare $A \cap \emptyset = \emptyset$

Komplementäres Element

- $lacksquare A \cup \overline{A} = \Omega$
- $A \cap \overline{A} = \emptyset$

Idempotenz

- $A \cup A = A$
- $A \cap A = A$

Absorption

- $A \cup (A \cap B) = A$
- $\blacksquare A \cap (A \cup B) = A$

De Morgan

- $\overline{A \cup B} = \overline{A} \cap \overline{B}$
- $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Kapitel 3: Wahrscheinlichkeitsrechnung

- 3.1 Experimente
- 3.2 Stochastik und MMS
- 3.3 Grundbegriffe für diskrete Zufallsexperimente
- 3.4 Was ist Wahrscheinlichkeit?
- 3.5 Mehrstufige Zufallsexperimente
- 3.6 Zählprinzipien (Kombinatorik)
- 3.7 Stochastische (Un-)Abhängigkeit und bedingte Wahrscheinlichkeit

juergen-roth.de/lehre/didaktik-der-stochastik

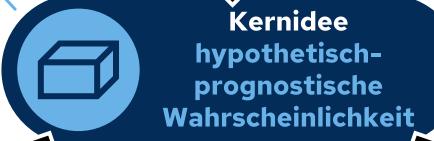
RPTU

Kernideen im Fokus

bei Wahrscheinlichkeit

- Konzept des Bezweifelns
- Modell (Wahrscheinlichkeit)↔ Realität (rel. Häufigkeit)
- aus Erfahrung wird Erwartung
- Repräsentative Stichprobe
- Wachsende Stichprobe→ reduziert Variabilität

- Konditionales Denken (Wenn ..., dann ...)



- Struktur erfassen (Form, Streuung, Maximum, ...)
- Gesetz der großen Zahlen
- Sichtweise: lokal ↔ global

Kernidee Repräsentativität und Variabilität von Stichproben-Daten

Kernidee Verteilungen

Lehrplan RLP: Leistungskurs

	Ziele / Inhalte (Sach- & Methodenkompetenz)	Hinweise zur Unterrichtsgestaltung und Methodenkompetenz		
2.	Wahrscheinlichkeiten bestimmen und in Sachzusammenhängen interpretieren (5.02g, 5.03g, 4.12g)	Der Schwerpunkt liegt auf der Entwicklung eines inhaltlichen Verständnisses des Wahrscheinlichkeitsbegriffs. Die Stabilisierung der relativen Häufigkeit soll an Beispielen erfahren werden (empirisches Gesetz der großen Zahlen); die Laplace-Wahrscheinlichkeit wird als Spezialfall behandelt. Zur Bestimmung von Wahrscheinlichkeiten können systematische Abzählverfahren verwendet werden; eine ausführliche Behandlung kombinatorischer Regeln ist nicht intendiert.		
3.	Rechenregeln zur Bestimmung der Wahrscheinlichkeiten von Ereignissen begründen und anwenden (5.02g, 5.03g)	z.B. Pfadregeln (Summe, Produkt), Wahrscheinlichkeit des Gegener- eignisses, Wahrscheinlichkeit der Vereinigungsmenge von Ereignissen		
4.	Zufallsexperimente mit Hilfe von Zufalls- zahlen simulieren und die Ergebnisse der Simulation interpretieren (5.05g)	Für die Durchführung der Simulationen sollte der Computer benutzt werden. Die SuS sollen erfahren, dass Simulationen dort sinnvoll eingesetzt werden, wo eine wahrscheinlichkeitstheoretische Lösung nicht möglich oder zu komplex ist. Im Unterricht können durch Simulationen auch wahrscheinlichkeitstheoretische Aussagen und Formeln vorbereitet oder bestätigt werden.		

Lehrplan RLP: Grundkurs

Stochastik 1

	Ziele / Inhalte (Sach- & Methodenkompetenz)	Hinweise zur Unterrichtsgestaltung und Methodenkompetenz
2.	Wahrscheinlichkeiten bestimmen und in Sachzusammenhängen interpretieren (5.02g, 5.03g, 4.12g)	Der Schwerpunkt liegt auf der Entwicklung eines inhaltlichen Verständnisses des Wahrscheinlichkeitsbegriffs. Die Stabilisierung der relativen Häufigkeit soll an Beispielen erfahren werden (empirisches Gesetz der großen Zahlen); die Laplace-Wahrscheinlichkeit wird als Spezialfall behandelt. Zur Bestimmung von Wahrscheinlichkeiten können systematische Abzählverfahren verwendet werden; eine ausführliche Behandlung kombinatorischer Regeln ist nicht intendiert.
3.	Einfache Rechenregeln zur Bestim- mung der Wahrscheinlichkeit von Ereignissen anwenden (5.02g)	z.B. Pfadregeln (Summe, Produkt), Wahrscheinlichkeit des Gegenereignisses

15.03.2025

Zugänge zur Wahrscheinlichkeit

Hypothetisch-prognostische Wahrscheinlichkeit

Subjektive Wahrscheinlichkeit

Frequentistische Wahrscheinlichkeit

Laplace-Wahrscheinlichkeit

Axiomatische Wahrscheinlichkeit

3.4.0

Zusammenfassender Einstieg: Hypothetisch-prognostischer Wahrscheinlichkeitsbegriff

Hypothetisch-prognostischer Wahrscheinlichkeitsbegriff

Paradigmen

- (1) Hypothetisch-prognostischer Wahrscheinlichkeitsbegriff als Basis
- (2) Modell und Realität klar unterscheiden und konsequent trennen
- (3) Zufallsschwankungen untersuchen und gerade nicht wegwünschen
- (4) Authentische Probleme bearbeiten
- (5) Die Schritte Spekulieren Experimentieren – Simulieren – Reflektieren konsequent durchlaufen

Realitätsebene	Modellebene
Relative Häufigkeiten	Wahrscheinlichkeiten
$h_1 + \dots + h_n = 100\%$	$p_1 + \dots + p_n = 100\%$
Leben im "Becher"	Leben im "Kopf"
zurück schauen	nach vorne schauen
schwanken zufällig	werden festgelegt, bezweifelt, verbessert,
Im Fall von Teilsymmetrien: ungefähr gleich	Im Fall von Teilsymmetrien: genau gleich
$\overline{x} = x_1 \cdot h_1 + \dots + x_n \cdot h_n$	Erwartungswert $\mu = x_1 \cdot p_1 + \dots + x_n \cdot p_n$
Standardabw. (empirisch) $s = \sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot h_i}$	Standardabweichung $\sigma = \sqrt{\sum_{i=1}^{n} (x_i - \mu)^2 \cdot p_i}$

Riemer-Quader oder Lego-Stein

Aufgabe: Jede(r) erhält einen Riemer-Quader. (Quader im Foto links. Gegenüberliegende Zahlen ergänzen sich zu 7.) Sehen Sie sich die Quader genau an und schätzen Sie die Chancen der sechs Augenzahlen in Prozent. Nicht würfeln, nur schätzen! Ungefähr! Nach Gefühl!

Lernende beraten intensiv, machen Prozentangaben und beachten intuitiv:

- Gegenseiten haben gleiche Chancen.
- Große Seiten haben große Chancen.
- Alle Chancen addieren sich zu 100%.

Schätzungen in einer Tabelle festhalten und Glaubwürdigkeit diskutieren!

Schätzungen und "berechnete Proportionalitätshypothese" Glaub-Hypothetische ein ige Schätzungen würdigk. 3 Wahrscheinlichkeitsverteilungen 35% 10% 10% 5% 35% 5% 100% 30% Rene Stefan 25% 25% 15% 15% 10% 10% 100% 10% Alexa 12% 35% 20% 0% 10% 15% 100% 20% 20% 15% 0% 15% 15% 15% 100% Joanna 5% 30% 15% 50% 30% 5% 100% Jasm in 15% Fläche cm² 4.6 4.6 2.6 20.38 22.6% 22.6% 100% 10%

Riemer-Quader: http://www.riemer-koeln.de/cmbasic/?quader 😚
Riemer, W. (o. J.). Mit Quadern "würfeln" – Wahrscheinlichkeit als Modell der Wirklichkeit erleben – Modellierungskreislauf
Riemer, W. (2023). Statistik unterrichten – Eine handlungsorientierte Didaktik der Stochastik. Kallmeyer, 17-26

15.03.2025

Riemer-Quader oder Lego-Stein

Würfeln Sie 100-mal mit dem Riemer-Quader und halten Sie Ihre Ergebnisse in einer Tabelle fest. Die Ergebnisse von jeweils fünf Lernenden werden in 5er-Gruppen zusammengefasst.

Wahrscheinlichkeiten sagen relative Häufigkeiten auf lange Sicht voraus. Sie sind gut gewählt, wenn die (durch Zufallseinflüsse schwankenden) relativen Häufigkeiten um die Wahrscheinlichkeit pendeln, also etwa gleich oft über und unter der Wahrscheinlichkeit liegen.

Würfelergebnisse von zwei 5er-Gruppen

Patrick	10	6	28	41	4	11	1
Daniel	6	7	35	45	4	3	1
Binoy	7	4	37	34	1	17	-
Tobias	3	6	48	33	6	4	1
Michael	12	0	28	42	7	11	1
abs. H.	38	23	176	195	22	46	
%	7.6%	4.6%	35 .2%	39.0%	4.4%	9.2%	10

Paula	11	6	34	32	7	10
Elaine	14	10	28	24	9	15
Marie	4	6	41	32	11	6
Marga	10	6	34	29	7	14
Sandra	7	4	30	37	4	18
abs.H.	46	32	167	154	38	63
%	9.2%	6.4%	33 .4%	30.8%	7.6%	12.6%

Summe (27 SuS)	279	207	834	883	20 4	293	2700
%	10.3%	7.7%	30 .9%	32.7%	7.6%	10.9%	100%

Konsensfähige geschätzte Wahrscheinlichkeiten

orauchba re " Hyp othes e"							
orauchba re " Hyp othes e"	B 10.5%	8.0%	31 .5%	31.5%	8.0% 10.5%	100%	ľ

6

Riemer-Quader: http://www.riemer-koeln.de/cmbasic/?quader 🕤
Riemer, W. (o. J.). Mit Quadern "würfeln" – Wahrscheinlichkeit als Modell der Wirklichkeit erleben – Modellierungskreislauf
Riemer, W. (2023). Statistik unterrichten – Eine handlungsorientierte Didaktik der Stochastik. Kallmeyer, 17-26

Würfeln

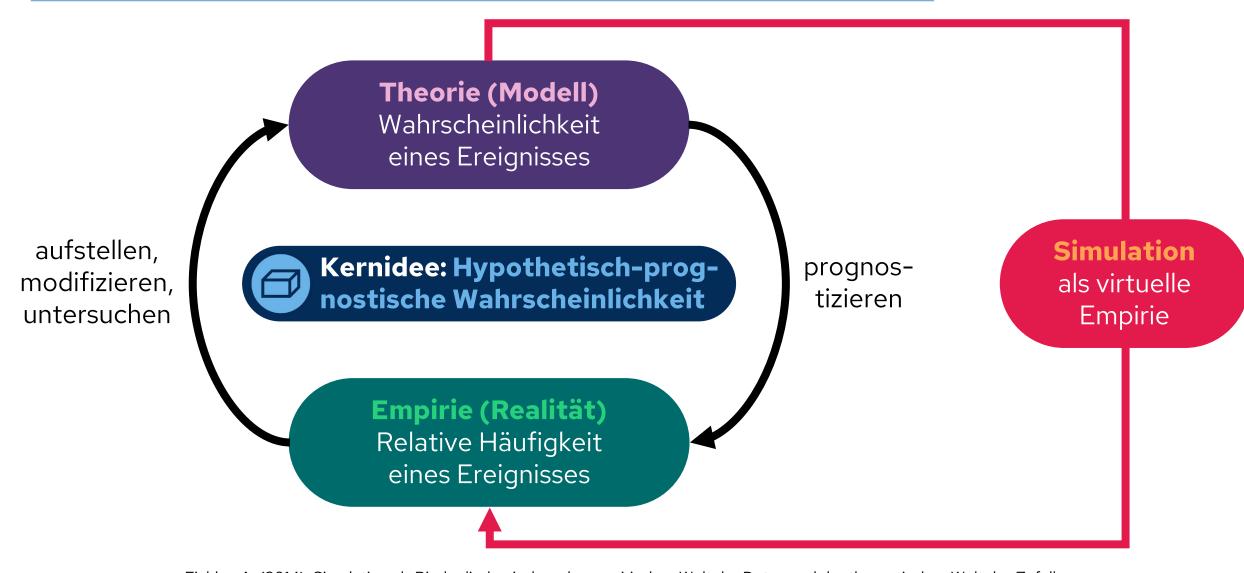
Normaler Würfel

- Intuitive Annahme (wegen der Symmetrie des Würfels): Das Auftreten der sechs Augenzahlen ist gleich wahrscheinlich.
- Ziel des Sammelns empirischer Daten (durch Werfen des Würfels): Gewähltes Modell (der Gleichverteilung) untersuchen und ggf. modifizieren (gezinkter Würfel).
- Ergebnis des Werfens: Bei Kumulation der Ergebnisse stabilisieren sich die relativen Häufigkeiten und pendeln sich zumindest annähernd bei dem im Modell zugrunde liegenden Wert von $\frac{1}{6}$ ein.
- Diese Erkenntnis zum empirischen Gesetz der großen Zahlen kann für das Aufstellen von Modellen für nichtoder teilsymmetrische Zufallsgeneratoren wie den LEGO-Würfel wesentlich sein und das Vertrauen in die Schätzgüte langer Versuchsreihen unterstützen.

LEGO-Stein

- Spekulieren: Modell(e) zur erwarteten relativen Häufigkeit des Auftretens der jeweiligen Augenzahlen aufstellen.
- Experimentieren: Lange Versuchsreihen durchführen (alle würfeln jeweils 100-mal) und Ergebnisse visualisieren.
- Reflektieren: Modellkritik: Verwerfen oder Stützen und ggf. anpassen von Modellen
- Simulieren: Passung des angepassten Modells zur Realität untersuchen.

Empirie (Realität) ↔ Theorie (Modell)



Würfeln mit einem Spielwürfel 🏶

20																		
		1			2			3			4			5			6	
n	H({1})	kH({1})	h({1})	H({2})	kH({2})	h({2})	H({3})	kH({3})	h({3})	H({4})	kH({4})	h({4})	H({5})	kH({5})	h({5})	H({6})	kH({6})	h({6})
100	21	21	21,0%	16	16	16,0%	20	20	20,0%	20	20	20,0%	10	10	10,0%	13	13	13,0%
200	14	35	17,5%	24	40	20,0%	19	39	19,5%	18	38	19,0%	15	25	12,5%	10	23	11,5%
300	17	52	17,3%	15	55	18,3%	14	53	17,7%	13	51	17,0%	19	44	14,7%	22	45	15,0%
400	19	71	17,8%	15	70	17,5%	15	68	17,0%	14	65	16,3%	17	61	15,3%	20	65	16,3%
500	17	88	17,6%	14	84	16,8%	15	83	16,6%	20	85	17,0%	18	79	15,8%	16	81	16,2%
600	17	105	17,5%	14	98	16,3%	26	109	18,2%	15	100	16,7%	16	95	15,8%	12	93	15,5%
700	15	120	17,1%	11	109	15,6%	24	133	19,0%	23	123	17,6%	21	116	16,6%	6	99	14,1%
800	17	137	17,1%	22	131	16,4%	22	155	19,4%	11	134	16,8%	12	128	16,0%	16	115	14,4%
900	15	152	16,9%	18	149	16,6%	15	170	18,9%	17	151	16,8%	15	143	15,9%	20	135	15,0%
1000	23	175	17,5%	25	174	17,4%	14	184	18,4%	11	162	16,2%	17	160	16,0%	10	145	14,5%
1100	13	188	17,1%	21	195	17,7%	11	195	17,7%	16	178	16,2%	15	175	15,9%	24	169	15,4%
1200	15	203	16,9%	22	217	18,1%	18	213	17,8%	15	193	16,1%	11	186	15,5%	19	188	15,7%
1300	16	219	16,8%	22	239	18,4%	20	233	17,9%	11	204	15,7%	15	201	15,5%	16	204	15,7%
1400	13	232	16,6%	17	256	18,3%	16	249	17,8%	22	226	16,1%	15	216	15,4%	17	221	15,8%
1500	14	246	16,4%	16	272	18,1%	14	263	17,5%	21	247	16,5%	16	232	15,5%	19	240	16,0%
1600	19	265	16,6%	9	281	17,6%	15	278	17,4%	19	266	16,6%	18	250	15,6%	20	260	16,3%
1700	20	285	16,8%	12	293	17,2%	15	293	17,2%	20	286	16,8%	12	262	15,4%	21	281	16,5%
1800	12	297	16,5%	14	307	17,1%	18	311	17,3%	13	299	16,6%	20	282	15,7%	23	304	16,9%
1900	10	307	16,2%	16	323	17,0%	29	340	17,9%	15	314	16,5%	15	297	15,6%	15	319	16,8%
2000	17	324	16,2%	20	343	17,2%	21	361	18,1%	14	328	16,4%	15	312	15,6%	13	332	16,6%

H: absolute Häufigkeit

kH: kumulierte absolute Häufigkeit

h: relative Häufigkeit

Simulation: Würfeln mit einem Spielwürfel 💖

Hier bitte die empirisch gestützte Hypothese zur Wahrscheinlichkeitsverteilung eintragen

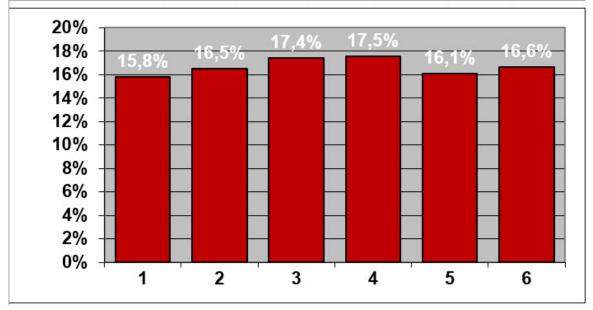
Hypothese zur Wahrscheinlichkeitsverteilung

Х	1	2	3	4	5	6
P(X=x)	0,1667	0,1667	0,1667	0,1667	0,1667	0,1667

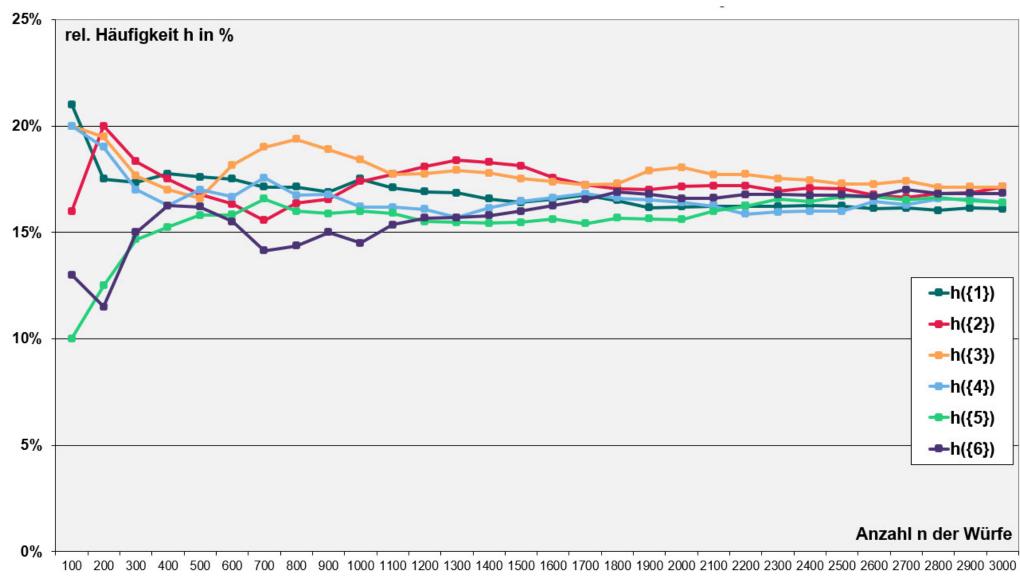
Simulation: Anzahl der simulierten Würfe 3000

Neue 3000-Serie: Taste F9 drücken!

Ergebnis	1	2	3	4	5	6
abs. Häufigkeit	474	496	522	526	483	499
relative Häufigkeit	15,8%	16,5%	17,4%	17,5%	16,1%	16,6%



Simulation: Würfeln mit einem Spielwürfel 🦃



Würfeln mit einem LEGO-Stein

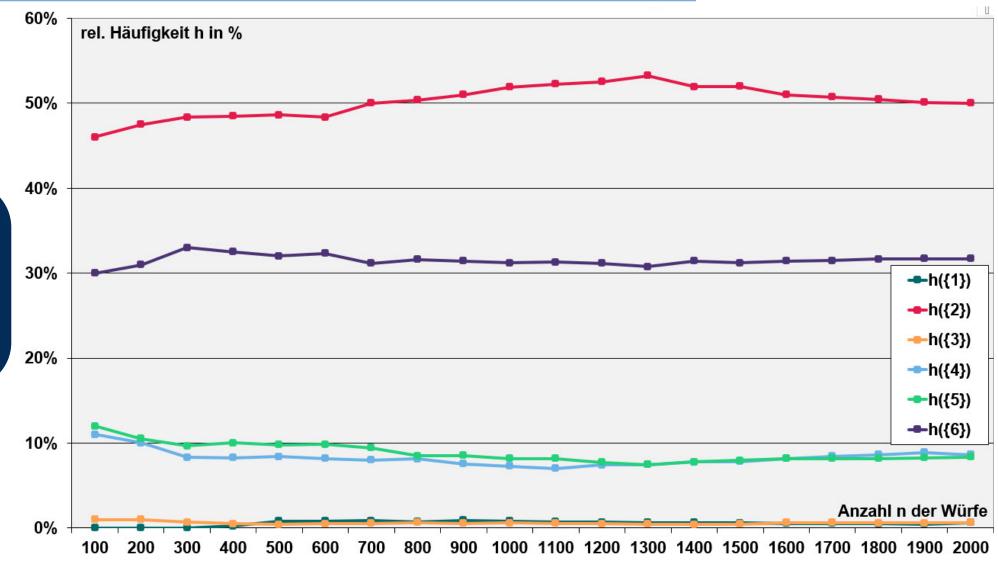
-													CO.				100	40
		1 1			2 2		N.	3			4 🦺	4		5 🖁	5		6	5
n	H({1})	kH({1})	h({1})	H({2})	kH({2})	h({2})	H({3})	kH({3})	h({3})	H({4})	kH({4})	h({4})	H({5})	kH({5})	h({5})	H({6})	kH({6})	h({6})
100	0	0	0,0%	46	46	46,0%	1	1	1,0%	11	11	11,0%	12	12	12,0%	30	30	30,0%
200	0	0	0,0%	49	95	47,5%	1	2	1,0%	9	20	10,0%	9	21	10,5%	32	62	31,0%
300	0	0	0,0%	50	145	48,3%	0	2	0,7%	5	25	8,3%	8	29	9,7%	37	99	33,0%
400	1	1	0,3%	49	194	48,5%	0	2	0,5%	8	33	8,3%	11	40	10,0%	31	130	32,5%
500	3	4	0,8%	49	243	48,6%	0	2	0,4%	9	42	8,4%	9	49	9,8%	30	160	32,0%
600	1	5	0,8%	47	290	48,3%	1	3	0,5%	7	49	8,2%	10	59	9,8%	34	194	32,3%
700	1	6	0,9%	60	350	50,0%	1	4	0,6%	7	56	8,0%	7	66	9,4%	24	218	31,1%
800	0	6	0,8%	53	403	50,4%	1	5	0,6%	9	65	8,1%	2	68	8,5%	35	253	31,6%
900	2	8	0,9%	56	459	51,0%	0	5	0,6%	3	68	7,6%	9	77	8,6%	30	283	31,4%
1000	0	8	0,8%	60	519	51,9%	1	6	0,6%	5	73	7,3%	5	82	8,2%	29	312	31,2%
1100	0	8	0,7%	56	575	52,3%	0	6	0,5%	4	77	7,0%	8	90	8,2%	32	344	31,3%
1200	0	8	0,7%	55	630	52,5%	0	6	0,5%	12	89	7,4%	3	93	7,8%	30	374	31,2%
1300	0	8	0,6%	62	692	53,2%	0	6	0,5%	8	97	7,5%	4	97	7,5%	26	400	30,8%
1400	1	9	0,6%	35	727	51,9%	0	6	0,4%	12	109	7,8%	12	109	7,8%	40	440	31,4%
1500	0	9	0,6%	53	780	52,0%	1	7	0,5%	8	117	7,8%	10	119	7,9%	28	468	31,2%
1600	0	9	0,6%	36	816	51,0%	3	10	0,6%	14	131	8,2%	12	131	8,2%	35	503	31,4%
1700	0	9	0,5%	46	862	50,7%	1	11	0,6%	13	144	8,5%	8	139	8,2%	32	535	31,5%
1800	0	9	0,5%	46	908	50,4%	0	11	0,6%	11	155	8,6%	8	147	8,2%	35	570	31,7%
1900	0	9	0,5%	44	952	50,1%	0	11	0,6%	14	169	8,9%	10	157	8,3%	32	602	31,7%
2000	4	13	0,7%	48	1000	50,0%	2	13	0,7%	4	173	8,7%	10	167	8,4%	32	634	31,7%

H: absolute Häufigkeit

kH: kumulierte absolute Häufigkeit

h: relative Häufigkeit

Würfeln mit einem LEGO-Stein



Simulation: Würfeln mit einem LEGO-Stein

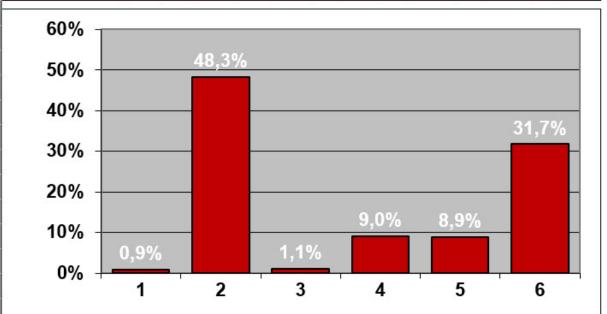
Hier bitte die empirisch gestützte Hypothese zur Wahrscheinlichkeitsverteilung eintragen

Empirisch fundiert	e Hypoth	nese zur	Wahrsch	neinlichk	eitsverte	ilung
х	1	2	3	4	5	6
P(X=x)	0.007	0.5	0.007	0.086	0.086	0.314

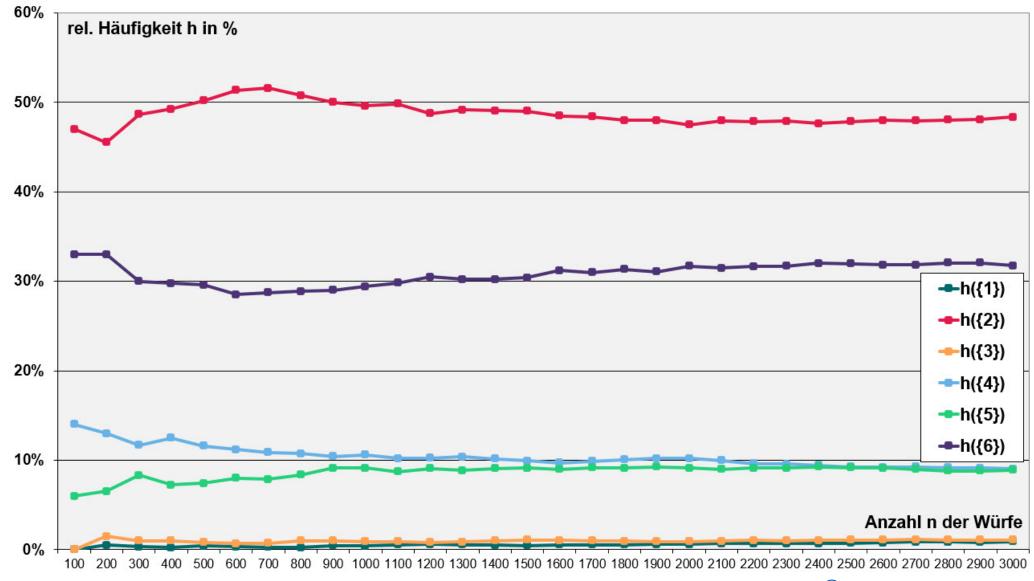
Simulation: Anzahl der simulierten Würfe 3000

Neue 3000-Serie: Taste F9 drücken!

Ergebnis	1	2	3	4	5	6
abs. Häufigkeit	27	1450	33	271	267	952
relative Häufigkeit	0,9%	48,3%	1,1%	9,0%	8,9%	31,7%



Simulation: Würfeln mit einem LEGO-Stein



Simulation: Würfeln mit einem LEGO-Stein

3.4.1 Subjektive Wahrscheinlichkeit

Subjektive Wahrscheinlichkeit

Subjektive Wahrscheinlichkeit

- intuitives Empfinden
- subjektives Vertrauen

Theoretischer Ansatz

Bezieht häufig eigene Erfahrungen und Wünsche ein.

Beispiele

- Größter anzunehmender (Reaktor-) Unfall (GAU)
 Wie wahrscheinlich ist ein GAU?
- Bayern München 1. FCK Wie groß ist die Wahrscheinlichkeit, dass der 1. FCK gewinnt?

Bemerkung

In der Praxis wird häufig eine Wahrscheinlichkeit angegeben (Medien, Versicherungen), ohne die Möglichkeit, sich auf Erfahrungswerte oder Berechnungen stützen zu können. Einschätzungen von Experten sind subjektiv und können sehr daneben liegen, sind aber dennoch wertvoll, da Experten alle verfügbaren Informationen einbeziehen und ihre Einschätzung auch revidieren können, wenn neue Informationen vorliegen.

Subjektive Wahrscheinlichkeit

Die Kiewer Führung hält ein Eingreifen von Belarus an der Seite Russlands in den Krieg gegen die Ukraine aktuell für wenig wahrscheinlich. Die Wahrscheinlichkeit, dass der belarussische Präsident Alexander Lukaschenko sich für eine Teilnahme am Krieg entscheide, liege "bei 15 bis 20 Prozent", sagte der ukrainische Präsidentenberater Olexij Arestowitsch nach Angaben der Agentur Unian.

https://www.boerse-online.de/nachrichten/aktien/kein-sofortigeseingreifen-von-belarus-die-nacht-im-ueberblick-1031300215

Wie wahrscheinlich würden Sie MediaMarkt aufgrund Ihrer letzten Erfahrung mit unserem Reparaturservice im MediaMarkt Landau einem Freund, Bekannten oder Kollegen empfehlen?

sehr unwahrscheinlich sehr wahrscheinlich

1 2 3 4 5 6 7 8 9 10

15.03.2025

Subjektive Wahrscheinlichkeit

Bemerkung

- Das untere Skalenende "völlig unmöglich" wird von der Lehrkraft mit 0 % und das obere "ganz sicher" mit 100 % beschriftet.
- Durch die Beschriftung der Ränder erhält jede Stelle der Skala die Bedeutung eines Prozentsatzes.
- Bei festem Grundwert n gehört zu jedem Prozentsatz p der Prozentwert $n \cdot p$.
- Bei reproduzierbaren Situationen ist n die Versuchszahl und $n \cdot p$ wird zur erwarteten Häufigkeit, kurz zum Erwartungswert, um den herum die Ergebnisse zufällig pendeln.

3.4.2 Frequentistische Wahrscheinlichkeit

Frequentistische Wahrscheinlichkeit

Frequentistische Wahrscheinlichkeit

Relative Häufigkeit als Schätzwert für die unbekannte Wahrscheinlichkeit.

Empirisches Gesetz der großen Zahlen

Mit wachsender Anzahl der Versuche stabilisiert sich die relative Häufigkeit eines beobachteten Ereignisses.

Beispiel

Mit welcher Wahrscheinlichkeit fällt bei diesem "Lego-Würfel" die sechs?

Empirischer Ansatz a posteriori

Bemerkung

Im Jahr 1919 hatte Richard Edler von Mises die Idee die Wahrscheinlichkeit P(E)eines Ereignisses über den Grenzwert der relativen

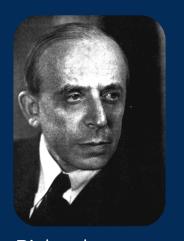
Häufigkeit $h_n(E)$ des Ereignisses für $n \to \infty$ (n: Anzahl der Versuche) zu definieren.

Dies musste allerdings scheitern. (Es gibt kein n_{ε} ab dem $h_n(E)$ immer in einer ε -Umgebung von P(E) liegt!)

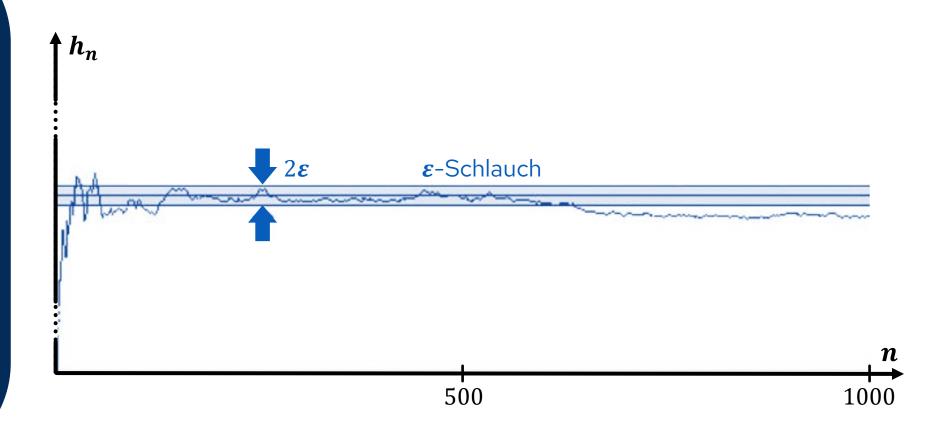
Frequentistische Wahrscheinlichkeit

Problem

Es gibt kein n_{ε} ab dem $h_n(E)$ immer in einer ε -Umgebung von P(E) liegt!



Richard Edler von Mises



Relative Häufigkeit: Eigenschaften

Bei m-maliger Durchführung eines Zufallsexperiments mit Ergebnismenge Ω gilt für die relativen Häufigkeiten:

Nichtnegativität

Für alle $E \subseteq \Omega$ gilt: $0 \le h_m(E) \le 1$

Normierung

$$h_m(\emptyset) = 0$$
 und $h_m(\Omega) = 1$

Relative Häufigkeit des Gegenereignisses

Für alle $E \subseteq \Omega$ gilt: $h_m(\bar{E}) = 1 - h_m(E)$

Additivität: Für alle
$$E_1, E_2 \subseteq \Omega$$
 mit $E_1 \cap E_2 = \emptyset$ gilt: $h_m(E_1 \cup E_2) = h_m(E_1) + h_m(E_2)$

Für alle $E_1, E_2 \subseteq \Omega$ gilt:

$$h_m(E_1 \cup E_2) = h_m(E_1) + h_m(E_2) - h_m(E_1 \cap E_2)$$

Speziell gilt: $h_m(E) = \sum_{\omega \in E} h_m(\{\omega\})$ und $h_m(\Omega) = \sum_{\omega \in \Omega} h_m(\{\omega\}) = 1$

3.4.3 Laplace-Wahrscheinlichkeit

Laplace-Wahrscheinlichkeit

Laplace-Wahrscheinlichkeit

Laplace-Annahme:

Alle Elementarereignisse sind gleich wahrscheinlich.

$$P(E) \coloneqq \frac{|E|}{|\Omega|} = \frac{\text{Anzahl der Elemente von } E}{\text{Anzahl der Elemente von } \Omega} = \frac{\text{"günstige"}}{\text{"mögliche"}}$$

Anmerkungen

- Die Laplace-Annahme ist nur selten gerechtfertigt.
- Die Ergebnismenge muss endlich sein!

Beispiel

Mit welcher Wahrscheinlichkeit fällt beim Spielwürfel die sechs?

Theoretischer Ansatz a priori

Bemerkung

Beim Werfen einer normalen Münze räumt man dem Auftreten von Kopf und Zahl aus Symmetriegründen gleiche Chancen ein. Diese Idee geht auf den französischen Mathematiker und Physiker Pierre Simon Laplace (1749-1827) zurück, der darauf aufbauend Regeln für das Gewinnen von Wahrscheinlichkeiten für bestimmte Zufallsexperimente (Laplace-Experimente) aufstellte. Seine 1812 veröffentlichte Theorie "Analytique des Probabilités" fasste das stochastische Wissen seiner Zeit zusammen und baute die Wahrscheinlichkeitstheorie maßgeblich aus.

Laplace-Wahrscheinlichkeit: Eigenschaften ^R τυ

Für Ereignisse eines Laplace-Experiments mit endlicher Ergebnismenge $\Omega = \{\omega_1, ..., \omega_n\}$ gilt:

Nichtnegativität

Für alle $E \subseteq \Omega$ gilt: $0 \le P(E) \le 1$

Normierung

$$P(\emptyset) = 0$$
 und $P(\Omega) = 1$

Wahrscheinlichkeit des Gegenereignisses

Für alle $E \subseteq \Omega$ gilt: $P(\bar{E}) = 1 - P(E)$

Additivität: Für alle
$$E_1, E_2 \subseteq \Omega$$
 mit $E_1 \cap E_2 = \emptyset$ gilt: $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Für alle E_1 , $E_2 \subseteq \Omega$ gilt:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Speziell gilt: $P(E) = \sum_{\omega \in E} P(\{\omega\})$ und $P(\Omega) = \sum_{\omega \in \Omega} P(\{\omega\}) = 1$

Laplace-Experiment: Hol die OMA aus der Socke

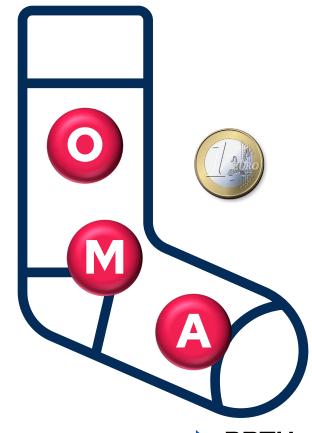
Schönes Unterrichtsbeispiel

Herausforderung:

Wer beim blinden Hineingreifen in diese Socke nacheinander die Buchstaben **O-M-A** zieht, gewinnt einen Euro!

Bemerkungen

- In vielen Klassen muss die Frage nach der **Chance** für **OMA** $\left(=\frac{1}{6}\right)$ nicht gestellt werden. Die Lernenden beantworten sie von sich aus: Sie notieren die sechs Kombinationen ... oder übersetzen das Bauchgefühl in Zahlen und entdecken dabei die Pfadregel(n): In einem Drittel aller Fälle erwischt man das **O**. Dann sind nur noch zwei Buchstaben da, es steht für das **M** dann "fifty-fifty" und die Hälfte von $\frac{1}{3}$ ist die Lösung: $\frac{1}{6}$
- Den **Erwartungswert** entdeckt man gleich mit: Wenn 30 Kinder in der Klasse sitzen, wird man im Schnitt 5 Münzen bereithalten müssen, wenn jeder einmal sein Glück probieren darf.
- Was ändert sich, wenn man die OMA zweimal in die Socke legt oder ein P hinzufügt und festlegt, dass man bei OMA und OPA gewinnt? Verdoppelt sich die Gewinnchance? Gute Frage!



Laplace-Experiment: Hol die OMA aus der Socke

Schönes Unterrichtsbeispiel

Experimentieren und intuitiv arbeiten

Mögliche Versuchsausgänge:

OMA, OAM, MOA, MAO, AOM, AMO

Chance für OMA:

1. Idee: Die Chance für jeden Versuchsausgang ist gleich. Es gibt unter den sechs möglichen Ergebnissen nur eine

OMA. \rightarrow Chance für OMA: $\frac{1}{6}$

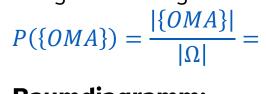
2. Idee: Chance für jeden Zug einzeln bestimmen und zusammensetzen:

Chance für O im ersten Zug: $\frac{1}{2}$

Chance für M im zweiten Zug: "fifty-fifty" also $\frac{1}{2}$

Chance für A im dritten Zug: "sicher" also 1

 \rightarrow Chance für OMA: Die Hälfte von $\frac{1}{3}$ also $\frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}$



Reflektieren und **Systematisieren**

Ergebenisraum Ω :

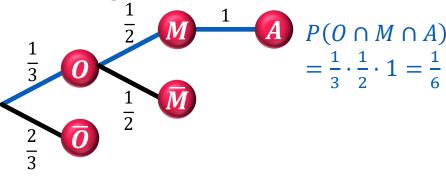
 $\Omega = \{OMA, OAM, MOA, MAO, AOM, AMO\}$

Wahrscheinlichkeit für OMA:

Laplace-Annahme: Alle Elementarereignisse sind gleichwahrscheinlich.

$$P(\{OMA\}) = \frac{|\{OMA\}|}{|\Omega|} = \frac{1}{6}$$

Baumdiagramm:



Laplace-Experiment: Hol die OMA aus der Socke

Schönes Unterrichtsbeispiel

Experimentieren und intuitiv arbeiten

Mittlerer Gewinn:

Da die Chance die OMA aus der Socke zu holen ½ ist und man nur bei OMA 1€ erhält, ist der mittlere Gewinn pro Versuch:

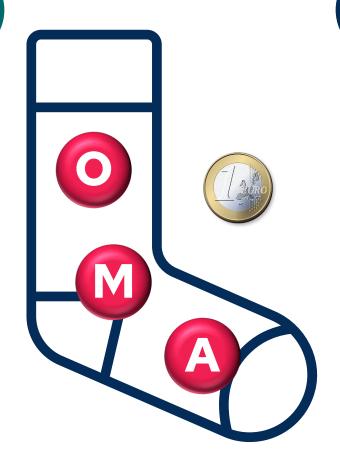
$$1 \in \frac{1}{6} = \frac{1}{6} \in 0.17 \in$$

Wie viel Euros muss die Lehrkraft in einer Klasse mit 30 Schülerinnen & Schüler im Schnitt bereitlegen?

Wenn alle einmal ihr Glück versuchen, muss die Lehrkraft im Schnitt

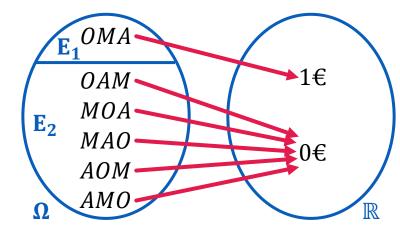
$$1 \in \frac{1}{6} \cdot 30 = 1 \in 5 = 5 \in$$

bereithalten.



Reflektieren und **Systematisieren**

Zufallsvariable X:



$$X: \Omega \to \mathbb{R}; \omega \mapsto \begin{cases} 1 \in \text{, falls } \omega = OMA \\ 0 \in \text{, falls } \omega \in \Omega \setminus \{OMA\} \end{cases}$$

Erwartungswert E(X) **für Gewinn:**

$$E(X) = 1 \in P(X = 1) + 0 \in P(X = 0)$$

= $1 \in \frac{1}{6} + 0 \in \frac{5}{6} = \frac{1}{6} \in 0.17$

3.4.4 Axiomatische Wahrscheinlichkeit

Axiomatische Wahrscheinlichkeit für endliche Mengen

Axiomensystem von Kolmogorov im endlichen Fall

Ein Wahrscheinlichkeitsraum (Ω, P) ist ein Paar bestehend aus einer nichtleeren endlichen Menge $\Omega = \{\omega_1, ..., \omega_n\}$ und einer Funktion $P: \wp(\Omega) \to \mathbb{R}$ mit folgenden Eigenschaften:

(1) Für alle $E \subseteq \Omega$ gilt:

$$P(E) \ge 0$$

Nichtnegativität

$$(2) P(\Omega) = 1$$

Normierung

(3) Für alle $E_1, E_2 \subseteq \Omega$ mit $E_1 \cap E_2 = \emptyset$ gilt: $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Additivität

Anmerkung: In der oben angegebenen Fassung für endliche Mengen ist das Axiomensystem von Kolmogorov für Lernende gut fassbar, auch weil die Axiome aufgrund der bereits "entdeckten" Eigenschaften der relativen Häufigkeit (<u>Folie 59</u>) & der Laplace-Wahrscheinlichkeit (<u>Folie 62</u>) gut nachvollziehbar sind. (Allgemeinere Fälle: Vgl. Folien 71 & 72.)

Theoretischer Ansatz a priori

Bemerkung

Andrei Kolmogorov (1903-1987) hat in seinem Buch "Grundbegriffe der Wahrscheinlichkeitsrechnung" (1933) die Wahrscheinlichkeit als normiertes Maß definiert. (vgl. Maße wie Länge, Volumen, …).

Alles, was diesen Axiomen genügt, kann als "Wahrscheinlichkeit" gedeutet werden.

RPTU

Wahrscheinlichkeitsverteilung Eigenschaften

Für einen endlichen Wahrschein-lichkeitsraum (Ω, P) gilt:

Nichtnegativität

Für alle $E \subseteq \Omega$ gilt: $0 \le P(E) \le 1$

Normierung

$$P(\emptyset) = 0$$
 und $P(\Omega) = 1$

Wahrscheinlichkeit des Gegenereignisses

Für alle $E \subseteq \Omega$ gilt: $P(\overline{E}) = 1 - P(E)$

Wahrscheinlichkeit der Vereinigung von Ereignissen

Für alle $E_1, E_2 \subseteq \Omega$ gilt: $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$

Speziell gilt:

■
$$P(E) = \sum_{\omega \in E} P(\{\omega\}) = \sum_{i=1}^{|E|} P(\{\omega_i\})$$

$$P(\Omega) = \sum_{\omega \in \Omega} P(\{\omega\}) = \sum_{i=1}^{|\Omega|} P(\{\omega_i\}) = 1$$

15.03.2025

Ausgewählte Beweise für Eigenschaften der Wahrscheinlichkeitsverteilung

Zu zeigen: $P(\emptyset) = 0$

Beweis:

$$1 \stackrel{(2)}{=} P(\Omega)$$

$$= P(\Omega \cup \emptyset)$$

$$\stackrel{(3)}{=} P(\Omega) + P(\emptyset)$$

$$\stackrel{(2)}{=} 1 + P(\emptyset)$$

$$\Rightarrow P(\emptyset) = 0$$

Zu zeigen:

Für alle $E \subseteq \Omega$ gilt: $P(E) \le 1$ und $P(\bar{E}) = 1 - P(E)$

Beweis:

$$1 \stackrel{(2)}{=} P(\Omega)$$

$$= P(E \cup \overline{E})$$

$$\stackrel{(3)}{=} P(E) + P(\overline{E})$$

$$\stackrel{(1)}{=} P(E)$$

$$\Rightarrow P(E) \leq 1 \text{ und } P(\overline{E}) = 1 - P(E)$$

Ausgewählte Beweise für Eigenschaften der Wahrscheinlichkeitsverteilung

Zu zeigen:

Für alle
$$E_1, E_2 \subseteq \Omega$$
 gilt:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Beweis:

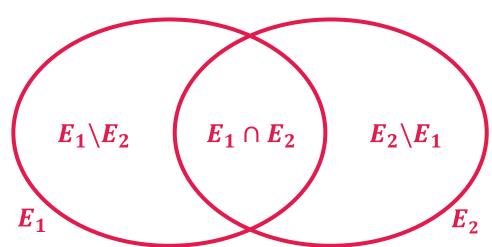
$$P(E_{1} \cup E_{2})$$

$$= P(E_{1} \setminus E_{2} \cup (E_{1} \cap E_{2}) \cup E_{2} \setminus E_{1})$$

$$\stackrel{(3)}{=} P(E_{1} \setminus E_{2}) + P(E_{1} \cap E_{2}) + P(E_{2} \setminus E_{1})$$

$$= P(E_{1} \setminus E_{2}) + P(E_{1} \cap E_{2}) + P(E_{2} \setminus E_{1}) + P(E_{1} \cap E_{2}) - P(E_{1} \cap E_{2})$$

$$\stackrel{(3)}{=} P(E_{1}) + P(E_{2}) - P(E_{1} \cap E_{2})$$



Axiomatische Wahrscheinlichkeit

für abzählbar unendliche Mengen

Axiomensystem von Kolmogorov im abzählbar unendlichen Fall

Ein Wahrscheinlichkeitsraum (Ω, P) ist ein Paar bestehend aus einer nichtleeren abzählbaren Menge

 $\Omega = \{\omega_1, \omega_2, \omega_3, ...\}$ und einer Funktion $P: \wp(\Omega) \to \mathbb{R}$ (Wahrscheinlichkeitsverteilung) mit folgenden Eigenschaften:

(1) Für alle $E \subseteq \Omega$ gilt: $P(E) \ge 0$

Nichtnegativität

 $(2) P(\Omega) = 1$

Normierung

(3) Für abzählbar viele paarweise disjunkte $E_i \subseteq \Omega$ gilt:

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

 σ -Additivität

Theoretischer Ansatz a priori

Bemerkung

Andrei Kolmogorov (1903-1987) hat in seinem Buch "Grundbegriffe der Wahrscheinlichkeitsrechnung" (1933) die Wahrscheinlichkeit als normiertes Maß definiert. (vgl. Maße wie Länge, Volumen, …).

Alles, was diesen Axiomen genügt, kann als "Wahrscheinlichkeit" gedeutet werden.

Axiomatische Wahrscheinlichkeit allgemein

Axiomensystem von Kolmogorov (allgemein)

Ein Wahrscheinlichkeitsraum $(\Omega, \mathfrak{I}, P)$ ist ein Tripel bestehend aus einer nichtleeren Menge Ω , einer σ -Algebra ℑ und einer Funktion $P: \mathfrak{I} \to [0; 1]$ (Wahrscheinlichkeitsverteilung) mit folgenden Eigenschaften:

Für alle $E \subseteq \Omega$ gilt: $P(E) \ge 0$

Nichtnegativität

 $P(\Omega) = 1$

Normierung

Für abzählbar viele paarweise disjunkte $E_i \subseteq \mathfrak{I}$ gilt:

$$P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$$

 σ -Additivität

Theoretischer Ansatz a priori

Bemerkung

Andrei Kolmogorov (1903-1987) hat in seinem Buch "Grundbegriffe der Wahrscheinlichkeitsrechnung" (1933) die Wahrscheinlichkeit als normiertes Maß definiert. (vgl. Maße wie Länge, Volumen, ...). Alles, was diesen Axiomen genügt, kann als "Wahrschein-

lichkeit" gedeutet werden.

Perspektiven bzgl. Wahrscheinlichkeit Vorstellungen von Lernenden

Lerner-Perspektive

Aufmerksamkeit auf Einzel-Ergebnis

Beispiel: Würfeln mit zwei Würfeln **Bedeutsamkeitsansatz**

"Ich habe im zweiten Spiel mehrmals die 8 geworfen und weiß auch warum. lch bin am 16.8. geboren."

Fachliche Perspektive

Aufmerksamkeit auf lange Sicht

Beispiel: Würfeln mit zwei Würfeln Möglichkeiten zählen

"Ich habe mich für die 7 entschieden, weil es hier sechs Möglichkeiten gibt. Bei den anderen gibt es nur fünf oder noch weniger Möglichkeiten ..." (Je mehr Möglichkeiten, desto größer ist die Wahrscheinlichkeit.)

Leitideen für den Stochastik-Unterricht

Alltagsvorstellungen ernst nehmen und zum Ausgangspunkt des Lernens machen.

→ Erfordert Situationen, die dies ermöglichen.

Erfahrungen durch Experimente ermöglichen.

Erfahrungen aus Experimenten systematisch reflektieren.

→ Mitgebrachte Vorstellungen überdenken.

Individuelle und fachliche Vorstellungen gegenüberstellen.

→ Ursachen für Diskrepanzen finden.

Notwendige Perspektivwechsel explizit machen.

Kapitel 3: Wahrscheinlichkeitsrechnung

- 3.1 Experimente
- 3.2 Stochastik und MMS
- 3.3 Grundbegriffe für diskrete Zufallsexperimente
- 3.4 Was ist Wahrscheinlichkeit?
- **3.5** Mehrstufige Zufallsexperimente
- 3.6 Zählprinzipien (Kombinatorik)
- 3.7 Stochastische (Un-)Abhängigkeit und bedingte Wahrscheinlichkeit

juergen-roth.de/lehre/didaktik-der-stochastik

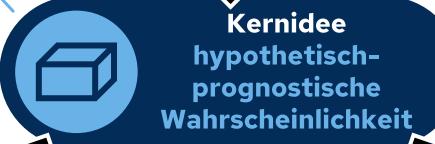
RPTU

Kernideen im Fokus

bei mehrstufigen Zufallsexperimente

- Konzept des Bezweifelns
- Modell (Wahrscheinlichkeit)↔ Realität (rel. Häufigkeit)
- aus Erfahrung wird Erwartung
- Repräsentative Stichprobe
- Wachsende Stichprobe→ reduziert Variabilität

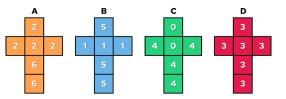
- Konditionales Denken (Wenn ..., dann ...)



- Struktur erfassen (Form, Streuung, Maximum, ...)
- Gesetz der großen Zahlen
- Sichtweise: lokal ↔ global

Kernidee Repräsentativität und Variabilität von Stichproben-Daten

Kernidee Verteilungen



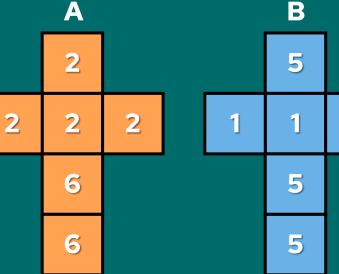
D

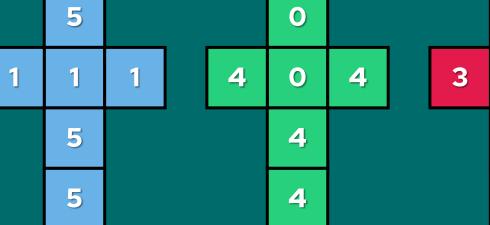
3

3

3

Gegeben sind diese vier durch ihre Netze beschriebenen Würfel, die sogenannten chinesischen Würfel nach Bradley Efron.



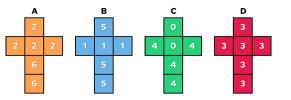


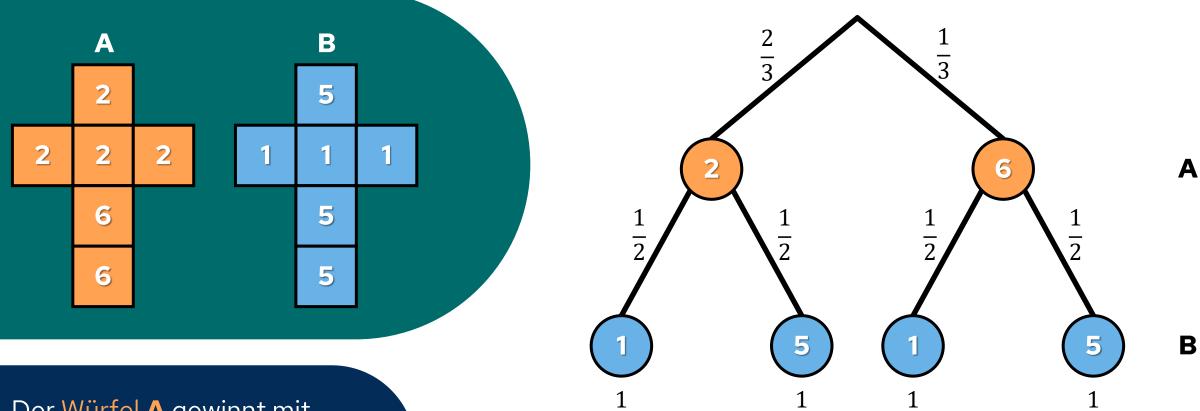
Aufgabe

15.03.2025

Zwei Spieler wählen nacheinander einen Würfel. Danach würfelt jeder einmal. Wer die höhere Punktzahl hat, gewinnt.

Wie sind die Gewinnchancen?





Der Würfel **A** gewinnt mit einer Wahrscheinlichkeit von $\frac{2}{3}$ gegen Würfel **B**.

Gewinner:

A

A

Baumdiagramm: Pfadregeln

Produktregel

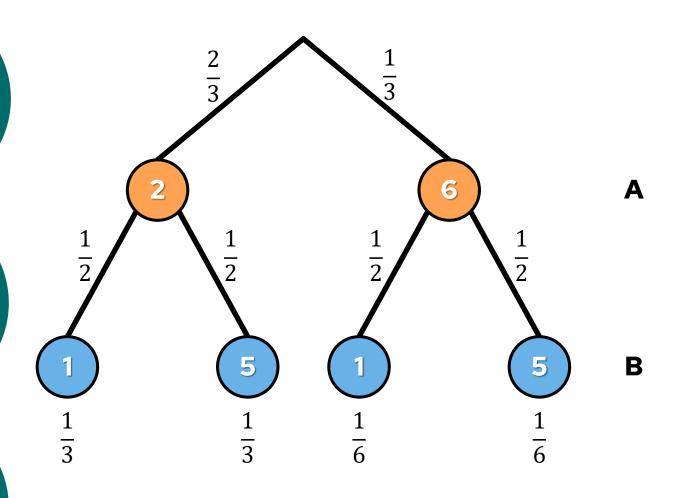
Die Wahrscheinlichkeit eines Ereignisses ist gleich dem Produkt der Wahrscheinlichkeiten entlang des zugehörigen Pfades im Baumdiagramm. $\left(\frac{1}{2} \text{von } \frac{2}{3}\right)$

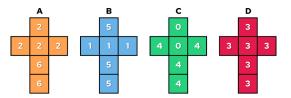
Summenregel

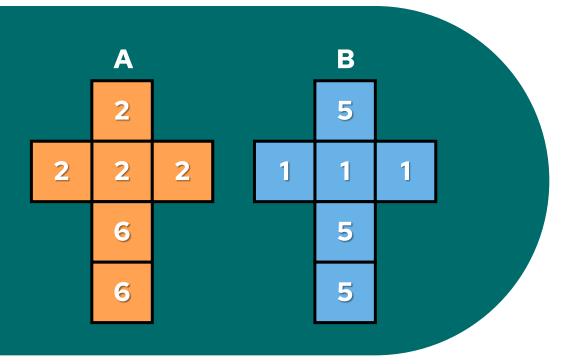
Die Wahrscheinlichkeit eines Ereignisses ist gleich der Summe der Wahrscheinlichkeiten aller Pfade, die für dieses Ereignis günstig sind. (Axiom: Additivität)

Verzweigungsregel

Die Summe der Wahrscheinlichkeiten an den Ästen, die von einem Verzweigungspunkt ausgehen ist immer 1.





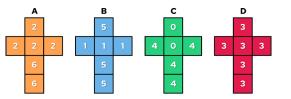


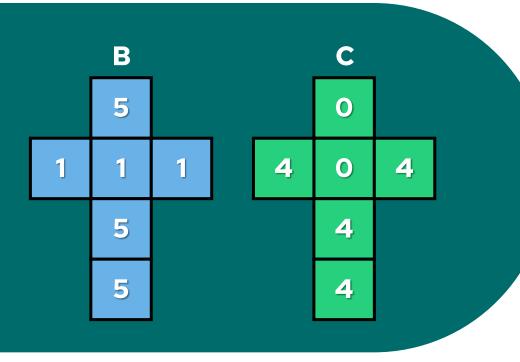
Der Würfel **A** gewinnt mit einer Wahrscheinlichkeit von $\frac{2}{3}$ gegen Würfel **B**.

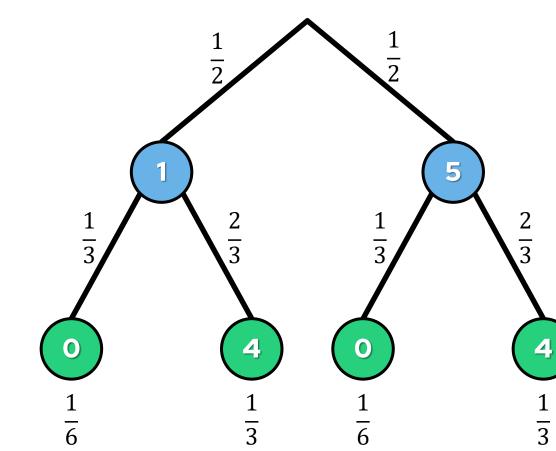
	1	1	1	5	5	5
2	A	A	A	В	В	В
2	A	A	A	В	В	В
2	A	A	A	В	В	В
2	A	A	A	В	В	В
6	A	A	A	A	A	A
6	A	A	A	A	A	A

$$P(\text{Würfel A gewinnt}) = \frac{24}{36} = \frac{2}{3}$$

15.03.2025







Der Würfel **B** gewinnt mit einer Wahrscheinlichkeit von $\frac{2}{3}$ gegen Würfel **C**

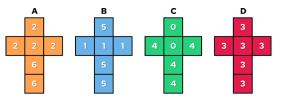
Gewinner:

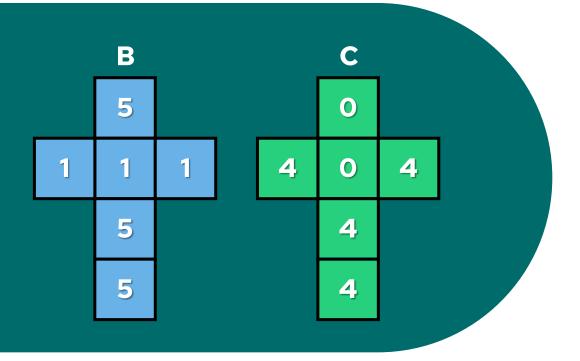
В

C

B

E



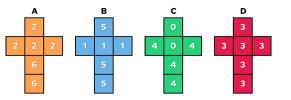


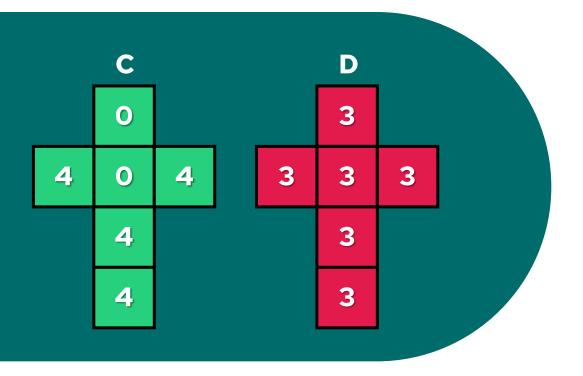
Der Würfel **B** gewinnt mit einer Wahrscheinlichkeit von $\frac{2}{3}$ gegen Würfel **C**

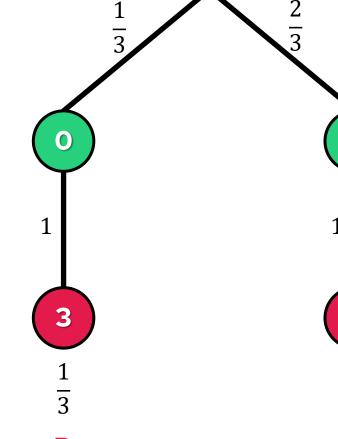
	0	0	4	4	4	4
1	В	В	С	С	С	С
1	В	В	С	С	С	С
1	В	В	С	С	С	С
5	В	В	В	В	В	В
5	В	В	В	В	В	В
5	В	В	В	В	В	В

$$P(\text{Würfel B gewinnt}) = \frac{24}{36} = \frac{2}{3}$$

15.03.2025





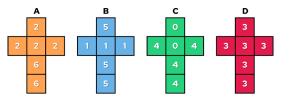


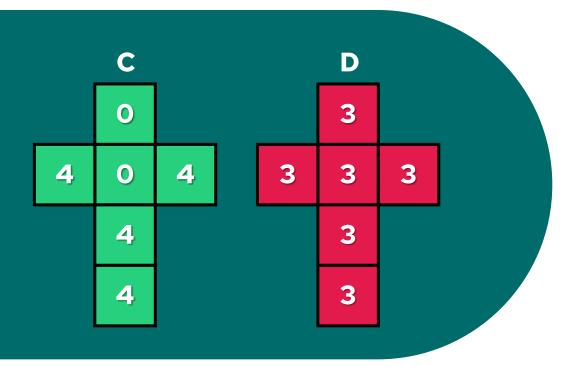
Der Würfel **C** gewinnt mit einer Wahrscheinlichkeit von $\frac{2}{3}$ gegen Würfel **D**.

Gewinner:

D

C



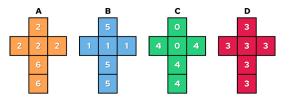


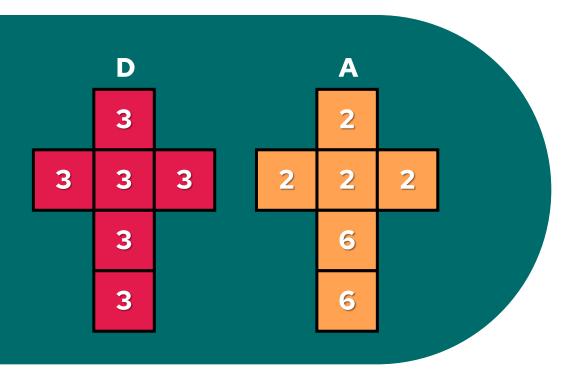
Der Würfel **C** gewinnt mit einer Wahrscheinlichkeit von $\frac{2}{3}$ gegen Würfel **D**.

	3	3	3	3	3	3
0	D	D	D	D	D	D
0	D	D	D	D	D	D
4	С	С	С	С	С	С
4	С	С	С	С	С	С
4	С	С	С	C	C	С
4	С	C	С	U	U	C

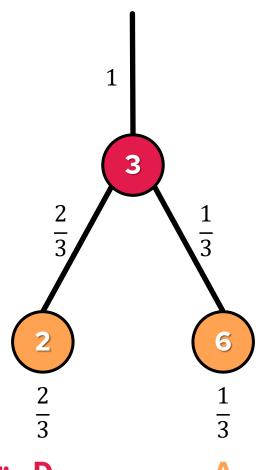
$$P(\text{Würfel } \mathbf{C} \text{ gewinnt}) = \frac{24}{36} = \frac{2}{3}$$

15.03.2025

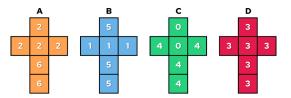


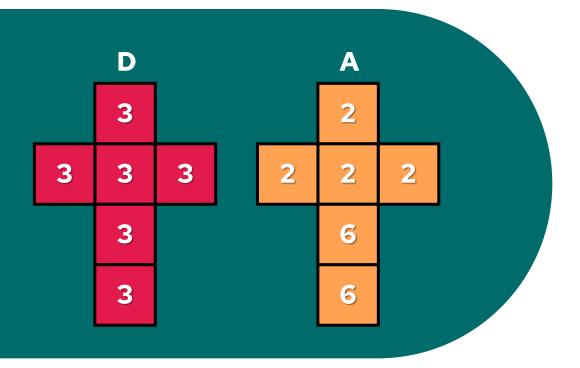


Der Würfel **D** gewinnt mit einer Wahrscheinlichkeit von $\frac{2}{3}$ gegen Würfel **A**.



Gewinner: D

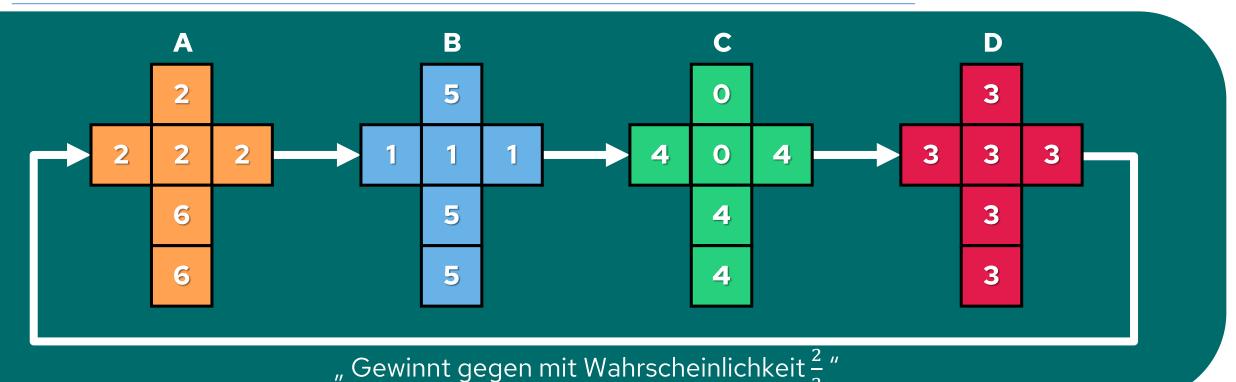




Der Würfel **D** gewinnt mit einer Wahrscheinlichkeit von $\frac{2}{3}$ gegen Würfel **A**.

	2	2	2	2	6	6
3	D	D	D	D	A	A
3	D	D	D	D	A	A
3	D	D	D	D	A	A
3	D	D	D	D	A	A
3	D	D	D	D	A	A
3	D	D	D	D	A	A

$$P(\text{Würfel } D \text{ gewinnt}) = \frac{24}{36} = \frac{2}{3}$$

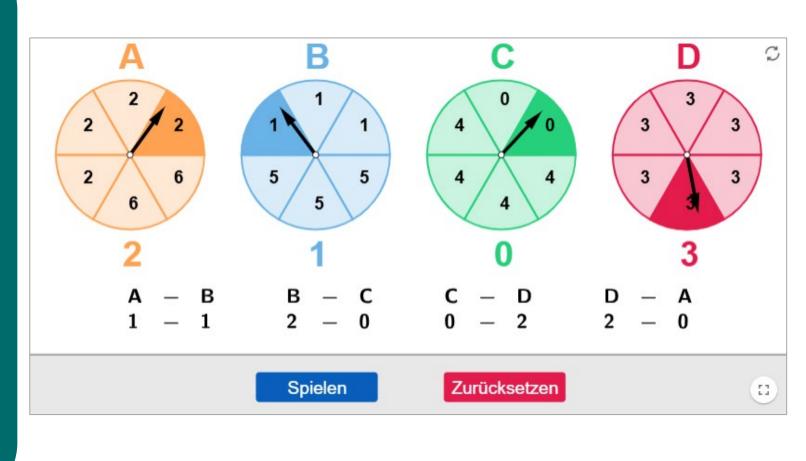


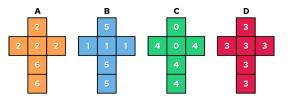
Ergebnis

- Die Relation "gewinnt gegen mit Wahrscheinlichkeit $\frac{2}{3}$ " ist auf der Menge dieser Würfel nicht transitiv. Man findet zu jedem Würfel einen "besseren".
- Der Spieler, der die zweite Wahl hat, ist im Vorteil!



A	2		В	5	
2	2	2	1	1	1
	6			5	
	6			5	
С	0		D	3	
C 4	0	4	D	3	3
		4			3



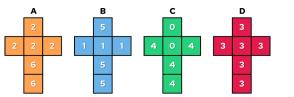


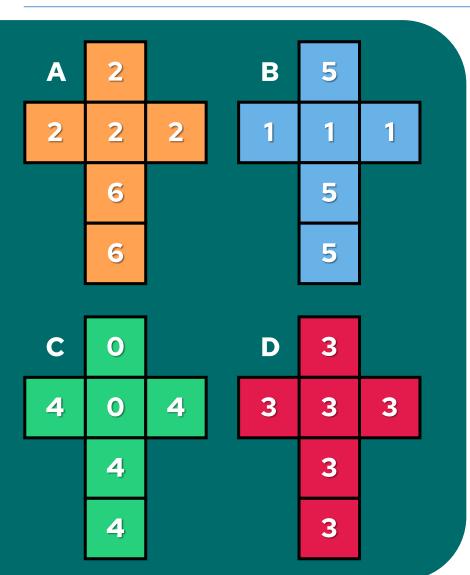
A	2		В	5	
2	2	2	1	1	1
	6			5	
	6			5	
С	0		D	3	
C 4	0	4	D 3	3	3
		4			3

	A	The state of the s	O	D
A	1			
В		_		
С			_	
D				_

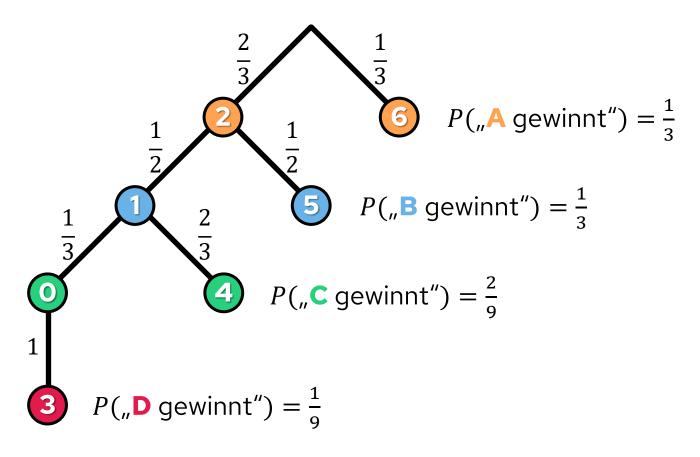
Aufgabe

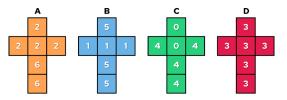
Tragen Sie in die Zellen der Tabelle jeweils die Wahrscheinlichkeit ein, dass Zeile gegen Spalte gewinnt.

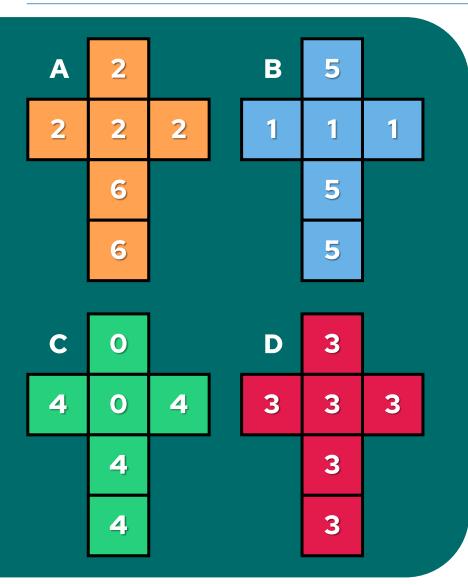


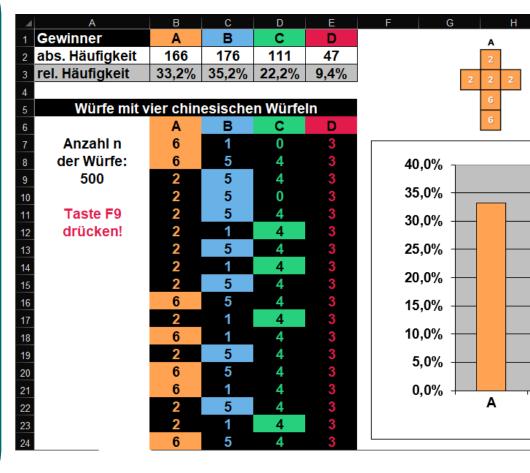


Aufgabe: Wie groß ist die Gewinn-Wahrscheinlichkeit für jeden der Würfel, wenn alle vier Würfel geworfen werden?







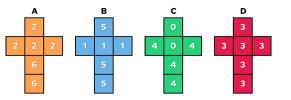


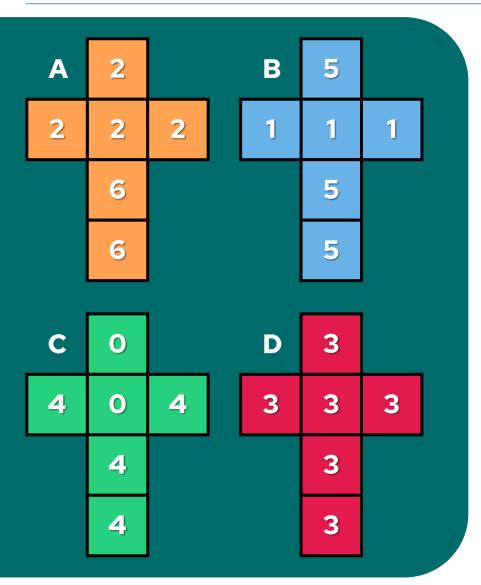
D

С

В

92





Neues Spiel

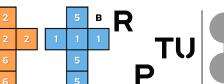
- Die beiden Spieler wählen je einen Würfel aus und spielen anschließend fünf Runden.
- Gewonnen hat der Spieler, der die meisten Runden gewonnen hat.

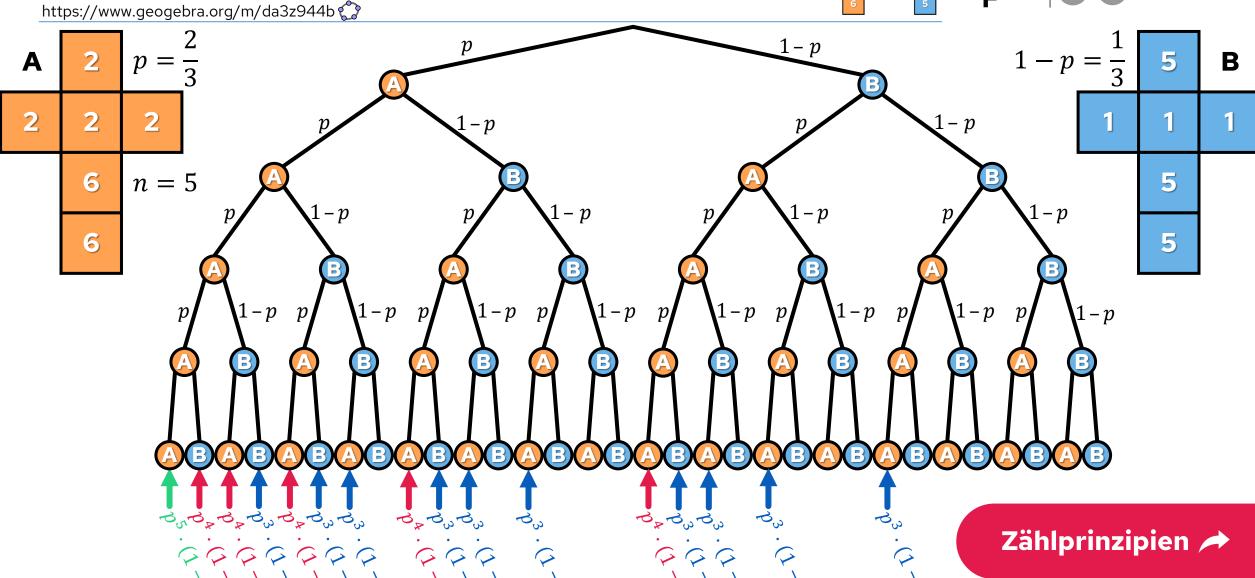
A	2		В	5	
2	2	2	1	1	1
	6			10	
	6			15	

Aufgabe

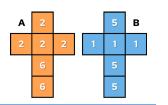
Wie groß ist die Wahrscheinlichkeit, dass der mit dem "besseren" bzw. der mit dem "schlechteren" Würfel gewinnt?

Baumdiagramm bei fünf Wurfrunden





Ergebnisraum bei fünf Wurfrunden



Treffer 1: Würfel A gewinnt in einer Wurfrunde

Niete 0: Würfel **B** gewinnt in einer Wurfrunde

Ergebnisraum Ω

```
\Omega = \{(1,1,1,1,1); (1,1,1,1,0); (1,1,1,0,1); (1,1,0,1,1); (1,0,1,1,1); (0,1,1,1,1); (1,1,1,0,0); (1,1,0,1,0); (1,1,0,1,0); (1,1,0,1,0); (1,1,0,1,0); (1,1,0,1,0); (1,1,0,1,0); (1,1,0,1,0); (1,1,0,1,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0); (1,1,0,0,0)
                                     (1,1,0,0,1);(1,0,1,1,0);(1,0,1,0,1);(1,0,0,1,1);(0,1,1,1,0);(0,1,1,0,1);(0,1,0,1,1);(0,0,1,1,1);
                                      (1,1,0,0,0);(1,0,1,0,0);(1,0,0,1,0);(1,0,0,0,1);(0,1,1,0,0);(0,1,0,1,0);(0,1,0,0,1);(0,0,1,1,0);
                                      (0,0,1,0,1); (0,0,0,1,1); (1,0,0,0,0); (0,1,0,0,0); (0,0,1,0,0); (0,0,0,1,0); (0,0,0,0,1); (0,0,0,0,0)
```

Ereignis

```
"2 Treffer": E_2 = \{(1,1,0,0,0); (1,0,1,0,0); (1,0,0,1,0); (1,0,0,0,1); (0,1,1,0,0); \}
                (0,1,0,1,0); (0,1,0,0,1); (0,0,1,1,0); (0,0,1,0,1); (0,0,0,1,1)
(1,0,0,1,1); (0,1,1,1,0); (0,1,1,0,1); (0,1,0,1,1); (0,0,1,1,1)
"4 Treffer": E_4 = \{(1,1,1,1,0); (1,1,1,0,1); (1,1,0,1,1); (1,0,1,1,1); (0,1,1,1,1)\}
"5 Treffer": E_5 = \{(1,1,1,1,1)\}
        \Rightarrow P(\text{"A gewinnt"}) = P(E_3 \cup E_4 \cup E_5) = P(E_3) + P(E_4) + P(E_5) = \frac{64}{91} \approx 0.79
```

Wahrscheinlichkeit

$$P(E_0) = 1 \cdot p^0 \cdot (1 - p)^5$$

$$P(E_1) = 5 \cdot p^1 \cdot (1 - p)^4$$

$$P(E_2) = 10 \cdot p^2 \cdot (1-p)^3$$

$$P(E_3) = 10 \cdot p^3 \cdot (1 - p)^2$$

$$P(E_4) = 5 \cdot p^4 \cdot (1 - p)^1$$

$$P(E_5) = 1 \cdot p^5 \cdot (1 - p)^0$$

Beispiel: Randomized-Response-Technik Datengewinnung bei heiklen Themen

Problem

Direkte Fragen zu heiklen Themen (z. B. "Haben Sie schon einmal Cannabis konsumiert?") werden in Umfragen oft nicht ehrlich beantwortet.

"Naive" Umfragen liefern deshalb keine verlässlichen Informationen.

Haben Sie schon einmal Cannabis konsumiert? Ja / Nein

B

Sehen Sie unten einen Schwarzen Punkt? Ja / Nein

Sehen Sie unten einen Schwarzen Punkt? Ja / Nein

Randomized-Response-Technik ...

- versucht mit geeigneten Methoden verlässliche Antworten auf heikle Fragen zu ermitteln.
- kann nur bei größeren Gruppen sinnvoll umgesetzt werden kann.

Vorgehen bei der Randomized-Response-Technik

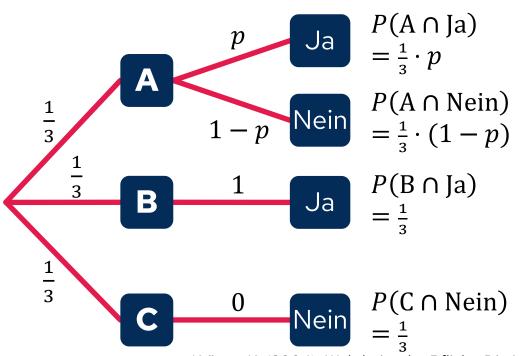
Eine Person zieht aus einem verdeckten Stapel eine der obigen Karten A, B oder C und hält diese geheim.

Anschließend beantwortet sie die auf der Karte stehende Frage wahrheitsgemäß mit "Ja" oder "Nein".

Beispiel: Randomized-Response-Technik Datengewinnung bei heiklen Themen

Aufgabe

Erstellen Sie ein Baumdiagramm zu diesem Zufallsexperiment und bestimmen Sie die Wahrscheinlichkeit p für die Antwort "Ja" nach ziehen von **A** , wenn insgesamt 40% aller Befragten mit "Ja" antworten.



Haben Sie schon einmal Cannabis konsumiert? Ja / Nein

Sehen Sie unten einen Schwarzen Punkt? Ja / Nein

Sehen Sie unten einen Schwarzen Punkt? Ja / Nein

Vorgehen bei der Randomized-Response-Technik

Eine Person zieht aus einem verdeckten Stapel eine der obigen Karten A, B oder C und hält diese geheim.

Anschließend beantwortet sie die auf der Karte stehende Frage wahrheitsgemäß mit "Ja" oder "Nein".

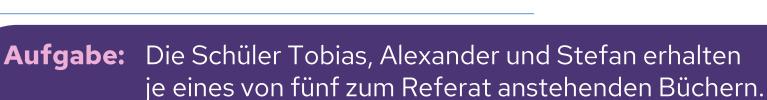
Kapitel 3: Wahrscheinlichkeitsrechnung

- 3.1 Experimente
- 3.2 Stochastik und MMS
- 3.3 Grundbegriffe für diskrete Zufallsexperimente
- 3.4 Was ist Wahrscheinlichkeit?
- 3.5 Mehrstufige Zufallsexperimente
- 3.6 Zählprinzipien (Kombinatorik)
- 3.7 Stochastische (Un-)Abhängigkeit und bedingte Wahrscheinlichkeit

juergen-roth.de/lehre/didaktik-der-stochastik

RPTU

Referatsthemen



Auf wie viele Arten ist eine solche Verteilung möglich?

Zählprinzipien

Zu beachten

- Gedankengänge sind umkehrbar.
- Lösungswege variieren.

Produktregel → Fundamentales Zählprinzip

Das zu Zählende wird in voneinander unabhängige Stufen aufgespalten, die einzeln gezählt und multipliziert werden. Es werden also die Möglichkeiten gezählt, Teile zu einem Ganzen zusammenzusetzen.

Summenregel → Regel des getrennten Abzählens

Sich gegenseitig ausschließende, aber in sich vollständige Fälle werden gezählt und anschließend addiert.

"Prinzip der Schäfer"

Ein Schäfer, der sehr schnell die Anzahl der Schafe in seiner Herde bestimmt, erklärt seine Vorgehensweise wie folgt: "Ich zähle die Beine und teile die Anzahl durch vier."

Beispiel:

Wie viele Zahlen aus drei Ziffern kann man bilden, wenn keine Ziffer wiederholt werden darf?

Beispiel:

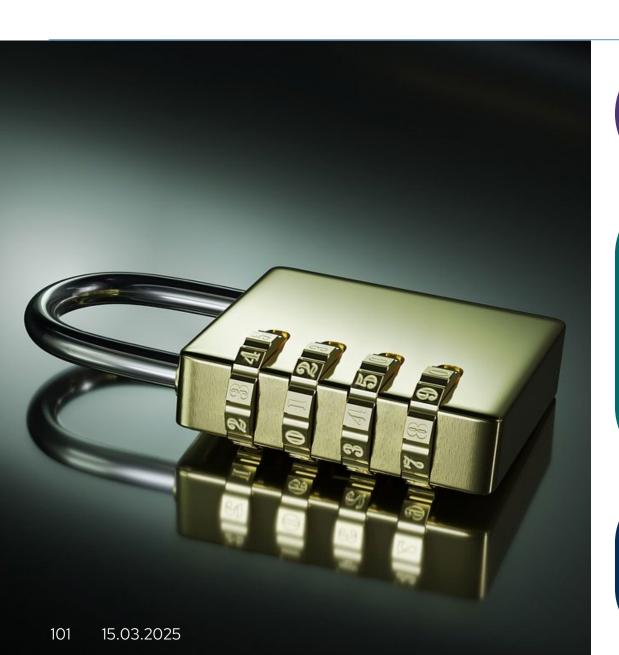
Auf wie viele Arten können sich 3 Mädchen und 3 Jungen so in eine Reihe setzen, dass Mädchen und Jungen abwechselnd sitzen? $(3 \cdot 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1) + (3 \cdot 3 \cdot 2 \cdot 2 \cdot 1 \cdot 1)$

Beispiel:

Wie viele 8-stellige Zahlen gibt es, in denen zweimal die Ziffer 3 und je dreimal die Ziffern 1 und 2 vorkommen?

 $2! \cdot 3! \cdot 3!$

Zahlenschloss



Aufgabe: Wie viele Möglichkeiten gibt es bei einem Zahlenschloss eine vierstellige Zahl aus den Ziffern 0 bis 9 zu bilden?

Zählprinzip

1. Stelle: 10 Möglichkeiten

2. Stelle: 10 Möglichkeiten

3. Stelle: 10 Möglichkeiten

4. Stelle: 10 Möglichkeiten

Anzahl der 4-Tupel aus einer 10-Menge

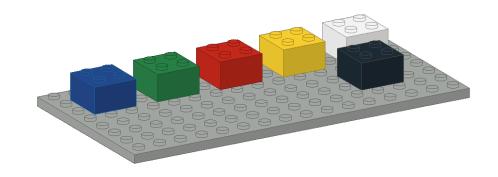
Anzahl der Möglichkeiten

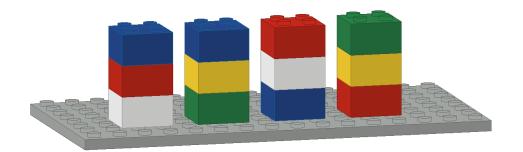
 $10 \cdot 10 \cdot 10 \cdot 10 = 10^4 = 10\ 000$

Gleichwertiges Urnenexperiment

Aus einer Urne mit zehn Kugeln, die von 0 bis 9 durchnummeriert sind, werden nacheinander vier Kugeln mit Zurücklegen gezogen.

LEGO-Türme





Aufgabe: Wie viele Möglichkeiten gibt es, aus 6 verschiedenfarbigen LEGO-Steinen einen Turm aus drei Stockwerken zu bauen?

Zählprinzip

■ 1. Stelle: 6 Möglichkeiten

2. Stelle: 5 Möglichkeiten

3. Stelle: 4 Möglichkeiten

Anzahl der 3-Permutationen aus einer 6-Menge

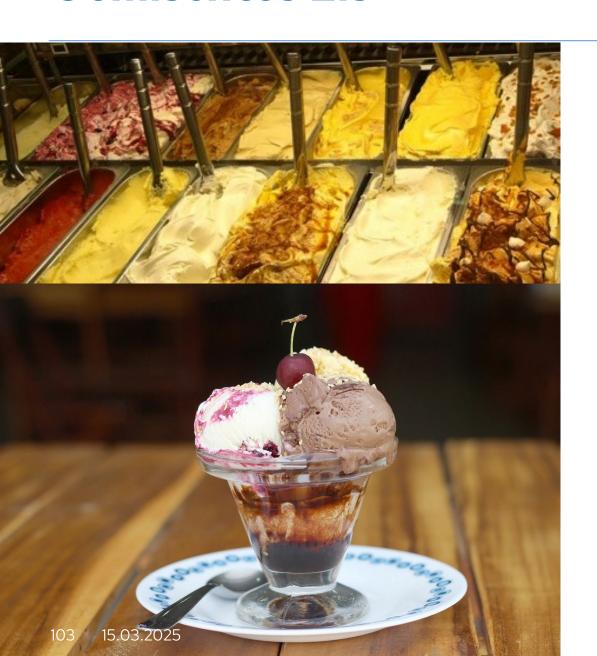
Anzahl der Möglichkeiten

$$6 \cdot 5 \cdot 4 = \frac{6!}{(6-3)!} = 120$$

Gleichwertiges Urnenexperiment

Aus einer Urne mit sechs Kugeln, die von 1 bis 6 durchnummeriert sind, werden nacheinander drei Kugeln ohne Zurücklegen gezogen.

Gemischtes Eis



Aufgabe: Wie viele Möglichkeiten gibt es aus 15 Eissorten ein gemischtes Eis mit drei verschiedenen Kugeln zusammenzustellen?

Zählprinzip

- 1. Kugel: 15 Möglichkeiten
- 2. Kugel: 14 Möglichkeiten
- 3. Kugel: 13 Möglichkeiten

Prinzip der Schäfer

Die Permutationen der drei Kugeln dürfen nur einmal gezählt werden.

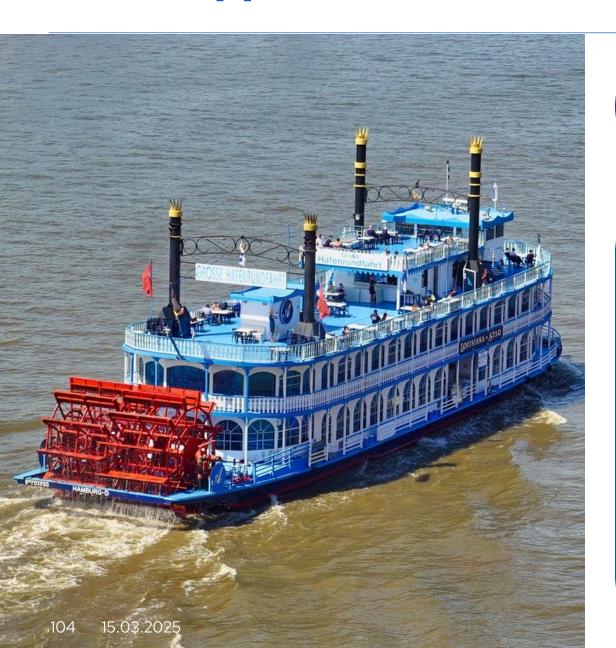
Anzahl der Möglichkeiten

$$\binom{15}{3} = \frac{15!}{(15-3)! \cdot 3!} = \frac{15 \cdot 14 \cdot 13}{3!} = 455$$

$$\binom{n}{k} \coloneqq \frac{n!}{(n-k)! \cdot k!}$$

Anzahl der 3-Teilmengen aus einer 15-Menge

Mississippi



Aufgabe: Wie viele verschiedene "Worte" mit elf Buchstaben kann man aus den Buchstaben des Wortes "Mississippi" bilden?

Zählprinzip

- Anzahl der möglichen Anordnungen von 11 Buchstaben auf 11 Stellen:
 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 11!
- Dabei wurden aber alle Vertauschungsmöglichkeiten für die vier i (4!), die vier s (4!) und die zwei p (2!) mitgezählt. Da diese nicht unterscheidbar sind und folglich nicht zu verschiedenen "Worten" führen, ergibt sich:

Anzahl der Möglichkeiten

$$\frac{11!}{4! \cdot 4! \cdot 2!} = \frac{39.916.800}{24 \cdot 24 \cdot 2} = 34.650$$

Zellenproblem

Verteilung der Kugelr	' /	2. Zelle	3. Zelle	Platznummer der Striche
1, 1, 1, 1	0000			5, 6
1, 1, 1, 2				4, 6
1, 1, 1, 3				4, 5
1, 1, 2, 2				3, 6
1, 1, 2, 3				3,5
1, 1, 3, 3				3, 4
1, 2, 2, 2				2, 6
1, 2, 2, 3				2,5
1, 2, 3, 3				2, 4
1, 3, 3, 3				2,3
2, 2, 2, 2		0000		1, 6
2, 2, 2, 3				1, 5
2, 2, 3, 3				1, 4
2, 3, 3, 3				1, 3
3, 3, 3, 3				1, 2
105	15.03.2025			

Aufgabe: Auf wie viele Arten kann man *k* nicht unterscheidbare Kugeln auf n Zellen verteilen, wenn eine Zelle bis zu k Kugeln aufnehmen kann? (Im Beispiel: 4 Kugeln und 3 Zellen)

Zählprinzip

- Drei Zellen können durch zwei Trennstriche realisiert werden. Kugeln und Trennstriche benötigen zusammen sechs Plätze.
- Die Verteilung der Kugeln ist durch die Platznummer der Trennstriche bestimmt.

Anzahl der Möglichkeiten die 2 Trennstrichplätze aus den 6 Plätzen auszuwählen

strichplätze aus den 6 Plätzen auszuwählen
$$15 = \binom{6}{2} = \binom{4+3-1}{3-1} = \binom{k+n-1}{n-1}$$

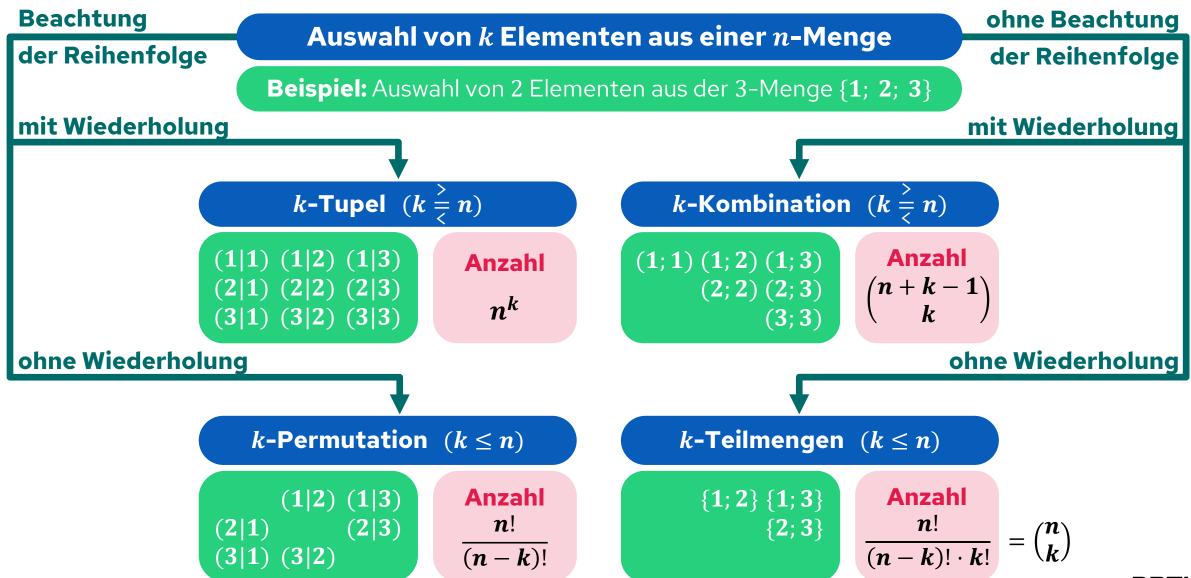
$$Anzahl der$$

$$4-Kombinationen$$

$$n-1$$

$$=\frac{(k+n-1)!}{(n-1)!\cdot k!}=\binom{k+n-1}{k}=\binom{n+k-1}{k}$$

Kombinatorik: Überblick



Referatsthemen

Ansatz 1: Stufung über Personen

Anzahl der Möglichkeiten:

$$5 \cdot 4 \cdot 3 = 60$$

Auf wie viele Arten ist eine solche Verteilung möglich?

Referatsthemen

Aufgabe: Die Schüler Tobias, Alexander und Stefan erhalten je eines von fünf zum Referat anstehenden Büchern. Auf wie viele Arten ist eine solche Verteilung möglich?

Ansatz 2: Stufung über Bücher

- 1. Buch wird verteilt \rightarrow 3 mögliche Adressaten
- 2. Buch wird verteilt \rightarrow 2 mögliche Adressaten
- 3. Buch wird verteilt \rightarrow 1 möglicher Adressat

Verteilungsvorgang ist mangels weiterer Adressaten beendet.

Anzahl der Möglichkeiten:

$$3 \cdot 2 \cdot 1 = 6$$

Problem: Es wurden nur 3 Bücher verteilt, die erst aus den 5 Büchern ausgewählt werden müssen!

$$\binom{5}{3}$$

Anzahl der Möglichkeiten:

$$\binom{5}{3} \cdot 3! = 5 \cdot 4 \cdot 3 = 60$$

Kapitel 3: Wahrscheinlichkeitsrechnung

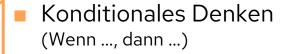
- 3.1 Experimente
- 3.2 Stochastik und MMS
- 3.3 Grundbegriffe für diskrete Zufallsexperimente
- 3.4 Was ist Wahrscheinlichkeit?
- 3.5 Mehrstufige Zufallsexperimente
- 3.6 Zählprinzipien (Kombinatorik)
- 3.7 Stochastische (Un-)Abhängigkeit und bedingte Wahrscheinlichkeit

juergen-roth.de/lehre/didaktik-der-stochastik

RPTU

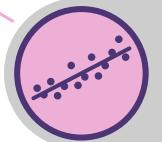
Kernideen im Fokus bei stochastischer (Un-)Abhängigkeit und bedingter Wahrscheinlichkeit

- Konzept des Bezweifelns
- Modell (Wahrscheinlichkeit)↔ Realität (rel. Häufigkeit)
- aus Erfahrung wird Erwartung
- Repräsentative Stichprobe
- Wachsende Stichprobe→ reduziert Variabilität



Kernidee
hypothetischprognostische
Wahrscheinlichkeit

- Struktur erfassen (Form, Streuung, Maximum, ...)
- Gesetz der großen Zahlen
- Sichtweise: lokal ↔ global



Kernidee Repräsentativität und Variabilität von Stichproben-Daten

Kernidee Verteilungen

Lehrplan RLP: Leistungskurs

		Hinweise zur Unterrichtsgestaltung und Methodenkompetenz
5.	Die Begriffe "bedingte Wahrschein- lichkeit" und "Unabhängigkeit zweier Ereignisse" kennen und anwenden (5.02g, 5.03g)	Im Rahmen des pädagogischen Freiraums sollte in diesem Zusammenhang auch der Satz von Bayes behandelt werden.

Lehrplan RLP: Grundkurs – Stochastik 1

	Ziele / Inhalte (Sach- & Methodenkompetenz)	Hinweise zur Unterrichtsgestaltung und Methodenkompetenz
4.	Teilvorgänge mehrstufiger Zufalls- experimente auf stochastische Unabhängigkeit anhand einfacher Beispiele untersuchen (5.03g)	

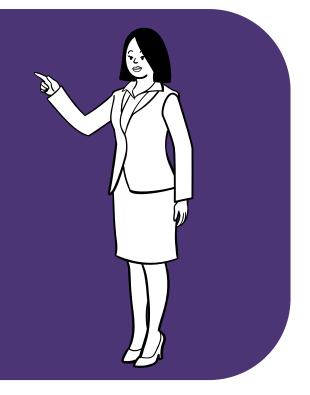
"Linda" – Eine Umfrage

Linda ist 31 Jahre alt und Single. Sie unterhält sich gerne über Themen wie Abrüstung oder Gleichberechtigung.

Einschätzung

Welche der folgenden Behauptungen ist dann eher wahrscheinlich?

- A Linda ist Bankkauffrau.
- B Linda ist Bankkauffrau und aktiv in der feministischen Bewegung.



Intuitive Urteile → Sekundäres Denken

Intuitive Urteile

- wie beim "Linda"-Problem sind nach Gardner (1991) mit optischen Täuschungen vergleichbar und unvermeidbar.
- können durch Metakognition, sogenanntes sekundäres Denken,
 (z. B. den bewussten Gebrauch von mathematischen Werkzeugen)
 überwunden werden.

Geeignete Aktivitäten zur Entwicklung sekundären Denkens

- Experimentieren und Spiele durchführen
- Computersimulationen einsetzen
- graphische Darstellungen nutzen

Daneben müssen mathematische Theorien stehen!

Ziel

Intuitives Verständnis für mathematische Argumente aufbauen.

- Verbessert die Fähigkeit rational zu denken.
- Hilft dabei, stochastische
 Situationen zu beurteilen.

15.03.2025

Bedingte Wahrscheinlichkeit

Aufgabe

- Es werden nacheinander zwei Karten aus einem verdeckten Kartenstapel mit 32 Karten gezogen.
- Wie groß ist die Wahrscheinlichkeit, dass die zweite Karte ein Ass ist unter der Bedingung, dass die erste Karte ein Bube ist?
- Wie groß ist die Wahrscheinlichkeit, dass die erste Karte ein Ass ist unter der Bedingung, dass die zweite Karte ein Bube ist?

Bedingte Wahrscheinlichkeit

Die bedingte Wahrscheinlichkeit P(A|B)

- ist die Wahrscheinlichkeit für das Ereignis A, wenn man weiß, dass B eingetreten ist.
- ist die Wahrscheinlichkeit für das Eintreten des Ereignisses A unter der Bedingung, dass das Ereignis B (bereits) eingetreten ist.

Sprechweise

- Der senkrechte Strich ist zu lesen als "unter der Bedingung/Voraussetzung".
- Man sagt auch, P(A|B) ist "die Wahrscheinlichkeit für A unter der Bedingung B".

Alternative Schreibweisen

- Wahrscheinlichkeit für A unter der Bedingung B
- $\blacksquare P(A|B)$
- $\blacksquare P_B(A)$

Stochastische Unabhängigkeit

Beispiele

- Die Wahrscheinlichkeit für Regen ist unabhängig von unseren Wünschen.
- Die Zahl der Leute, die mit einem Regenschirm aus dem Haus gehen ist abhängig von der Wettervorhersage.

Unabhängige Ereignisse

Zwei Ereignisse \overline{A} und B sind (stochastisch) unabhängig, wenn

- sie sich in Hinblick auf die Wahrscheinlichkeit ihres Eintretens nicht beeinflussen.
- P(A) = P(A|B) bzw. P(B) = P(B|A)
- $P(A \cap B) = P(A) \cdot P(B)$

Definition

Zwei Éreignisse A und B heißen (stochastisch) unabhängig, wenn gilt: $P(A \cap B) = P(A) \cdot P(B)$

Stochastische Unabhängigkeit

Urnenexperiment

Aus einer Urne mit zwei roten und drei schwarzen Kugeln wird zweimal nacheinander eine Kugel gezogen. Vor jedem Zug wird sorgfältig gemischt.

Ziehen mit Zurücklegen

Legt man die Kugel nach dem ersten Ziehen wieder zurück, so sind die Ereignisse

- S_1 : "Schwarz beim ersten Zug" und
- S_2 : "Schwarz beim zweiten Zug"

voneinander unabhängig.

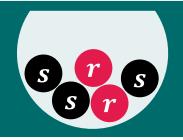
Ziehen ohne Zurücklegen

Legt man die Kugel nach dem ersten Ziehen nicht zurück, so sind die Ereignisse

- S_1 : "Schwarz beim ersten Zug" und
- S_2 : "Schwarz beim zweiten Zug" voneinander **abhängig**.

Hinweis: Zeichnen Sie Baumdiagramme, um die Unterschiede zu sehen!

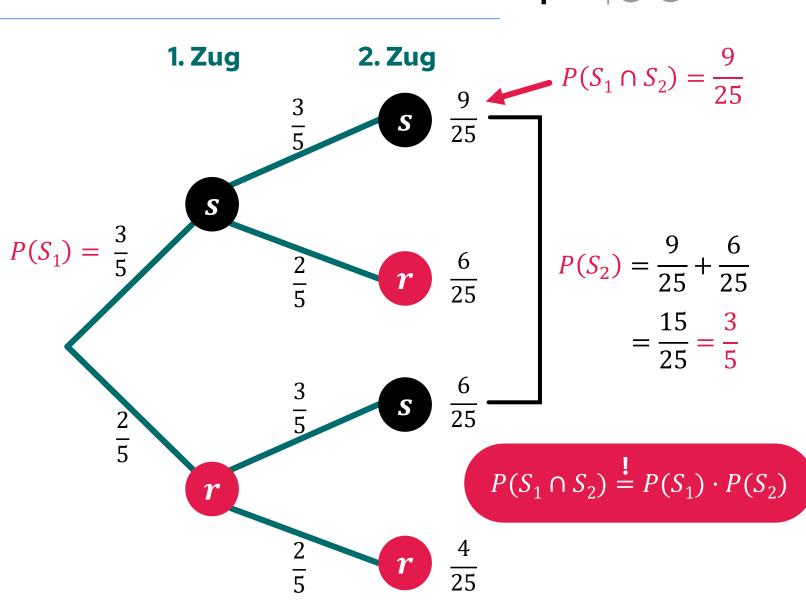
Ziehen mit Zurücklegen



S₁ Ereignis: "Schwarz beim ersten Zug"

S2 Ereignis: "Schwarz beim zweiten Zug"

Ereignis: "Schwarz **S**₁ ∩ **S**₂ beim ersten und beim zweiten Zug"

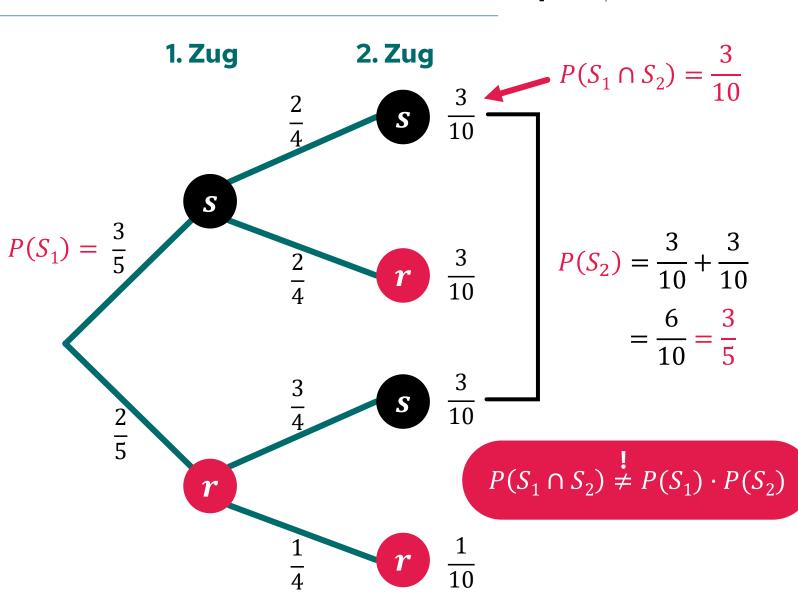


Ziehen ohne Zurücklegen

S₁ Ereignis: "Schwarz beim ersten Zug"

S2 Ereignis: "Schwarz beim zweiten Zug"

 $S_1 \cap S_2$ beim ersten und beim zweiten Zug"



Zufallsexperiment

Es wird einmal mit einem fairen Würfel gewürfelt.

Dabei interessieren folgende Ergebnisse bzgl. der Augenzahl:

- "Gerade Zahl"
- "Zahl größer als 2"
- "Primzahl"

Aufgabe

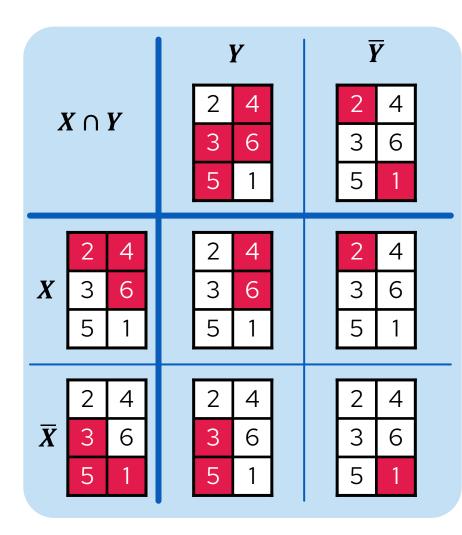
Wie kann die Wahrscheinlichkeit bestimmt werden, dass

- \boldsymbol{X} und \boldsymbol{Y} ,
- Y und Z bzw.

 $P(X \cap Y) \stackrel{?}{=} P(X) \cdot P(Y)$

 \boldsymbol{X} und \boldsymbol{Z}

gleichzeitig eintreten? Gesucht sind also die Wahrscheinlichkeiten $P(X \cap Y)$, $P(Y \cap Z)$ und $P(X \cap Z)$.



$$X \cap Y \qquad P(Y) = \frac{2}{3} \qquad P(\overline{Y}) = \frac{1}{3}$$

$$P(X) = \frac{1}{2} \qquad P(X \cap Y) = \frac{1}{3} \qquad P(X \cap \overline{Y}) = \frac{1}{6}$$

$$P(\overline{X}) = \frac{1}{2} \qquad P(\overline{X} \cap Y) = \frac{1}{3} \qquad P(\overline{X} \cap \overline{Y}) = \frac{1}{6}$$

Z: "Primzahl"

15.03.2025

		Z	\overline{Z}	
1	/ ∩ 7	2 4	2 4	
$Y \cap Z$		3 6	3 6	
		5 1	5 1	
	2 4	2 4	2 4	
Y	3 6	3 6	3 6	
	5 1	5 1	5 1	
	2 4	2 4	2 4	
\overline{Y}	3 6	3 6	3 6	
	5 1	5 1	5 1	

$$Y \cap Z \qquad P(Z) = \frac{1}{2} \qquad P(\overline{Z}) = \frac{1}{2}$$

$$P(Y) = \frac{2}{3} \qquad P(Y \cap Z) = \frac{1}{3} \qquad P(Y \cap \overline{Z}) = \frac{1}{3}$$

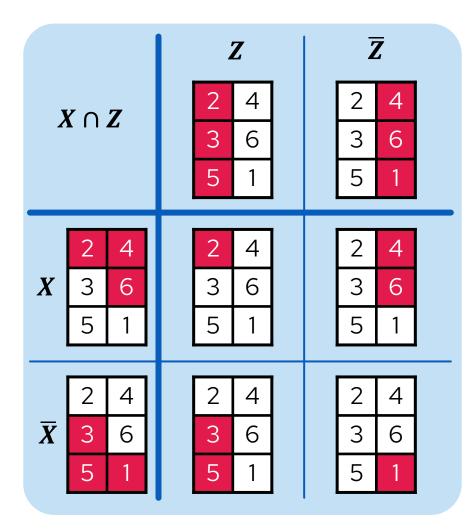
$$= P(Y) \cdot P(Z)$$

$$P(\overline{Y}) = \frac{1}{3} \qquad P(\overline{Y} \cap Z) = \frac{1}{6} \qquad P(\overline{Y} \cap \overline{Z}) = \frac{1}{6}$$

"Zahl größer als 2" unabhängig "Primzahl"

"Gerade

Zahl"



$$X \cap Z \qquad P(Z) = \frac{1}{2} \qquad P(\overline{Z}) = \frac{1}{2}$$

$$P(X) = \frac{1}{2} \qquad P(X \cap Z) = \frac{1}{6} \qquad P(X \cap \overline{Z}) = \frac{1}{3}$$

$$P(\overline{X}) = \frac{1}{2} \qquad P(\overline{X} \cap Z) = \frac{1}{3} \qquad P(\overline{X} \cap \overline{Z}) = \frac{1}{6}$$

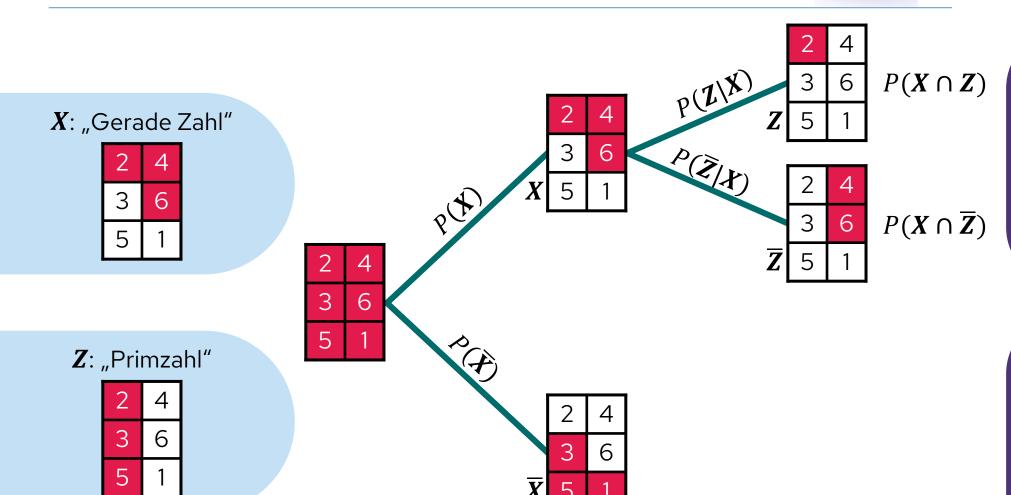
X: "Gerade Zahl"

abhängig

Y: "Zahl größer als 2"

Z: "Primzahl"

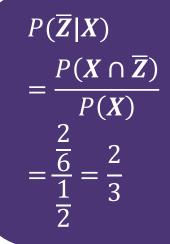
Bedingte Wahrscheinlichkeit



$$P(Z|X)$$

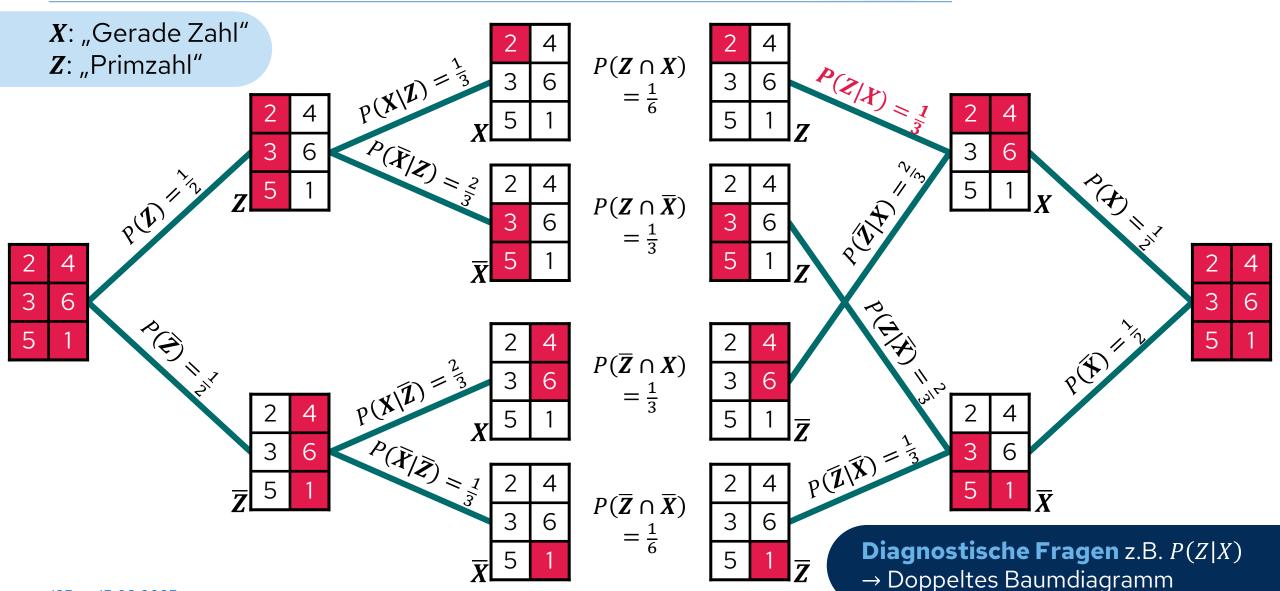
$$= \frac{P(X \cap Z)}{P(X)}$$

$$= \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$



Bedingte Wahrscheinlichkeit

Doppeltes Baumdiagramm



Bedingte Wahrscheinlichkeit Taxi-Problem

Taxi-Problem

Ein alter Mann wird Zeuge eines Autounfalls mit Fahrerflucht und berichtet, dass das flüchtende Auto ein blaues Taxi gewesen sei (Behauptung b). Es gibt zwei Taxiunternehmen in der Stadt, die 15 blaue (B) bzw. 85 grüne (G) Taxis haben. In der Verhandlung wird die Sehfähigkeit des Mannes geprüft und man bekommt heraus, dass er in 80% der Fälle die richtige Farbe zuordnen kann, d. h.:

$$P(b|B) = P(g|G) = 0.8$$

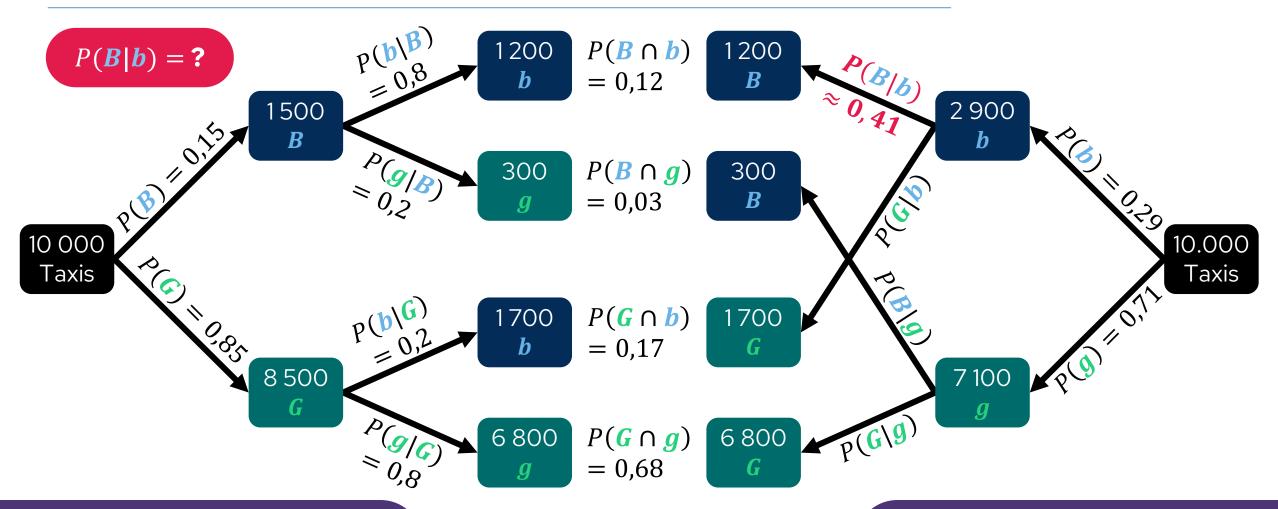
Aufgabe

Wie groß ist die Wahrscheinlichkeit, dass wirklich ein blaues Taxi in den Unfall verwickelt war?

$$P(B|b) = ?$$

Die meisten Befragten nehmen an, dass diese Wahrscheinlichkeit deutlich über 0,5 liegt.

Bedingte Wahrscheinlichkeit Taxi-Problem



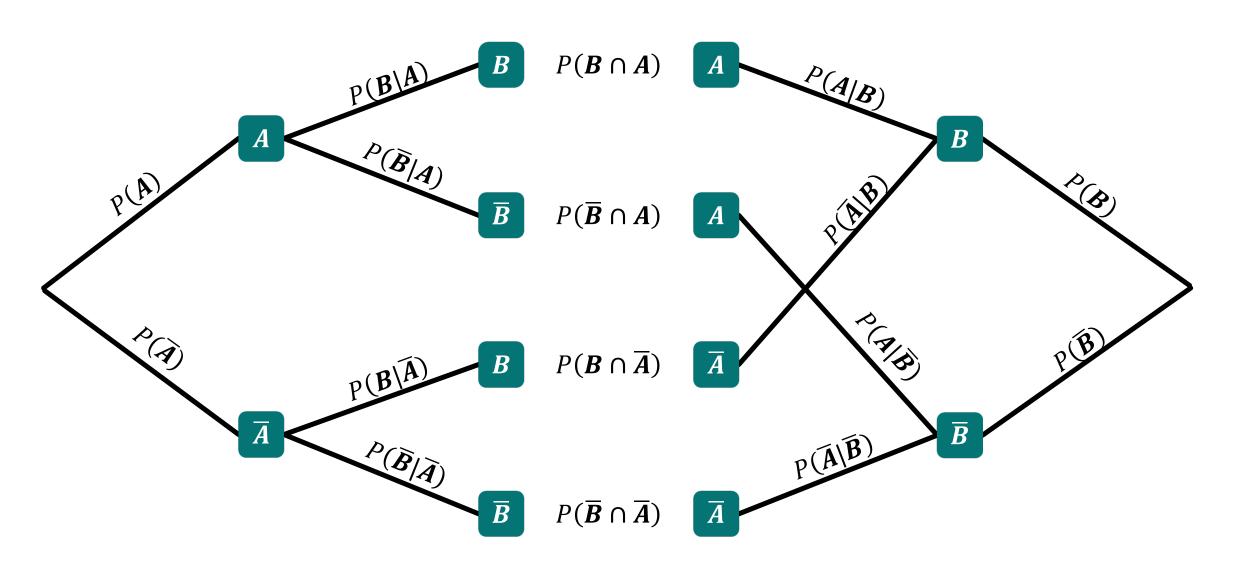
$$P(B|b) = \frac{P(B \cap b)}{P(b)} = \frac{0.12}{0.29} \approx 0.41$$

 $P(b) = P(B \cap b) + P(G \cap b)$ = 0,12 + 0,17 = 0,29

https://www.geogebra.org/m/td2qqkmw

Bedingte Wahrscheinlichkeit

Doppeltes Baumdiagramm



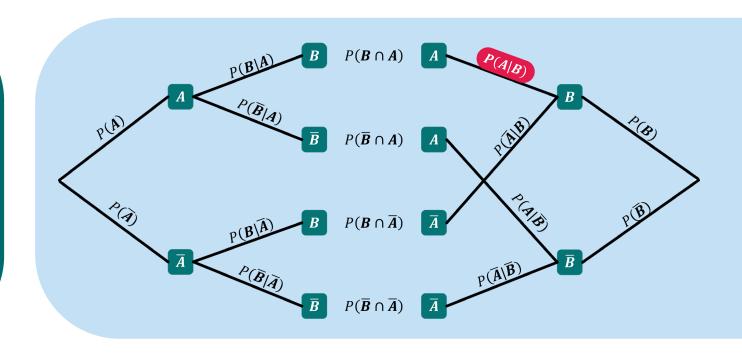
Totale Wahrscheinlichkeit und Formel von Bayes

$$P(A|B)$$

$$= \frac{P(B \cap A)}{P(B)}$$

$$= \frac{P(A) \cdot P(B|A)}{P(B \cap A) + P(B \cap \bar{A})}$$

$$= \frac{P(A) \cdot P(B|A)}{P(A) \cdot P(B|A) + P(\bar{A}) \cdot P(B|\bar{A})}$$



Totale Wahrscheinlichkeit von B

Für $\Omega = A \cup \overline{A}$ und $B \subseteq \Omega$ gilt:

$$P(B) = P(A) \cdot P(B|A) + P(\bar{A}) \cdot P(B|\bar{A})$$

Formel von Bayes

$$P(A|B) = \frac{P(A) \cdot P(B|A)}{P(A) \cdot P(B|A) + P(\bar{A}) \cdot P(B|\bar{A})}$$

Totale Wahrscheinlichkeit und Formel von Bayes

Satz von der totalen Wahrscheinlichkeit

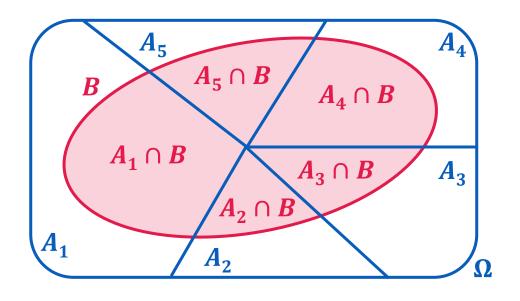
Seien $A_1, A_2, ..., A_n$ paarweise disjunkte Teilmengen von Ω mit $A_1 \cup A_2 \dots \cup A_n = \Omega$, dann gilt für jedes Ereignis $B \subseteq \Omega$:

$$P(B) = \sum_{i=1}^{n} P(A_i) \cdot P(B|A_i)$$

Satz von Bayes

Seien $A_1, A_2, ..., A_n$ paarweise disjunkte Teilmengen von Ω mit $A_1 \cup A_2 \dots \cup A_n = \Omega$, dann gilt für jedes Ereignis $B \subseteq \Omega$:

$$P(A_i|B) = \frac{P(A_i) \cdot P(B|A_i)}{\sum_{i=1}^{n} P(A_i) \cdot P(B|A_i)}$$



Medizinische Tests → Ärztliche Diagnosen Fachbegriffe

Prävalenz	Anteil der Erkrankten in der Bevölkerung	auch: Verbreitung
Sensitivität eines Tests	Wahrscheinlichkeit, dass ein erkrankter Mensch positiv getestet wird	auch: Empfindlichkeit, Richtigpositiv-Rate
Spezifität eines Tests	Wahrscheinlichkeit, dass ein gesunder Mensch negativ getestet wird	auch: Richtignegativ-Rate
Positiver Vorhersagewert (ppV) eines Tests	Wahrscheinlichkeit, dass ein positiv getesteter Mensch tatsächlich erkrankt ist	auch: positive predictive Value (ppV), positiver Prädiktionswert, Relevanz

Medizinische Tests → Ärztliche Diagnosen Mammographie

Mammographie

Für die Mammographie als Diagnose-Methode für Brustkrebs sind folgende auf Grund von quantitativen Untersuchungen geschätzten Wahrscheinlichkeiten bekannt:

- 1% der weiblichen Bevölkerung einer bestimmten Altersgruppe hat Brustkrebs. (**Prävalenz**)
- Die **Sensitivität** der Mammographie beträgt **80**%. (Hat eine Patientin Brustkrebs, so kommt es in 80% der Fälle auch zu einer positiven Diagnose.)
- Die **Spezifität** der Mammographie beträgt **90**%. (Hat eine Patientin keinen Brustkrebs, so kommt es in 90% der Fälle auch zu einer negativen Diagnose.)

Medizinische Tests → Ärztliche Diagnosen

Mammographie - Vierfeldertafel

Prävalenz	1,00%	
Sensitivität	80,00%	
Spezifität	90,00%	

Anzahl der Untersuchten 3000

Gestaffelte Mehrfachtests sind sehr sinnvoll!

	Testergebnis positiv	Testergebnis negativ	Σ
tatsächlich krank	24	6	30
tatsächlich gesund	297	2673	2970
Σ	321	2679	3000

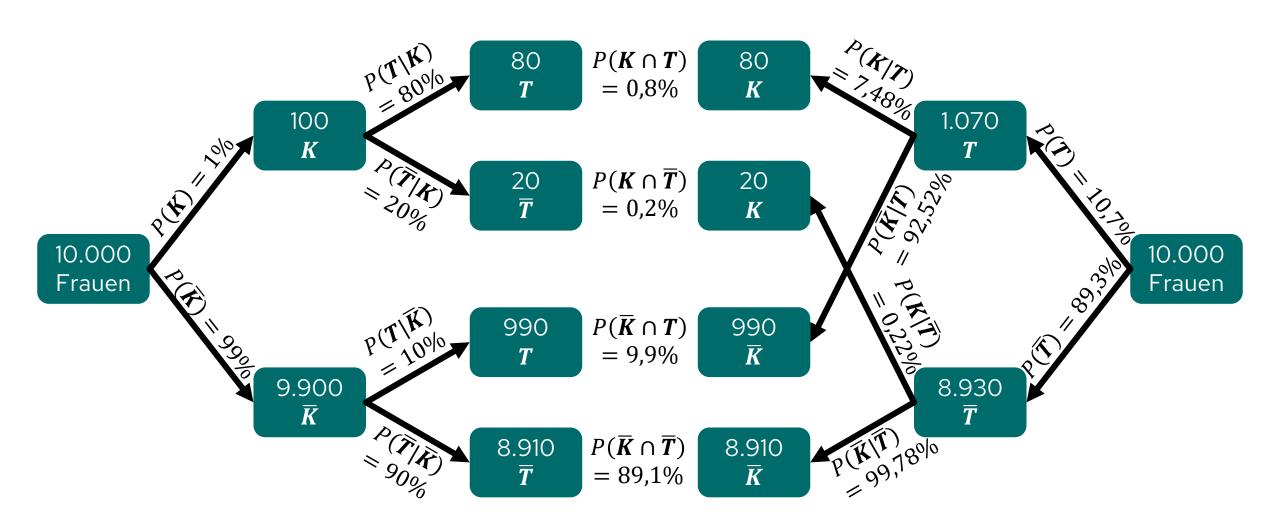
positiver 7,48%

Darstellungen im Vergleich: Vierfeldertafel

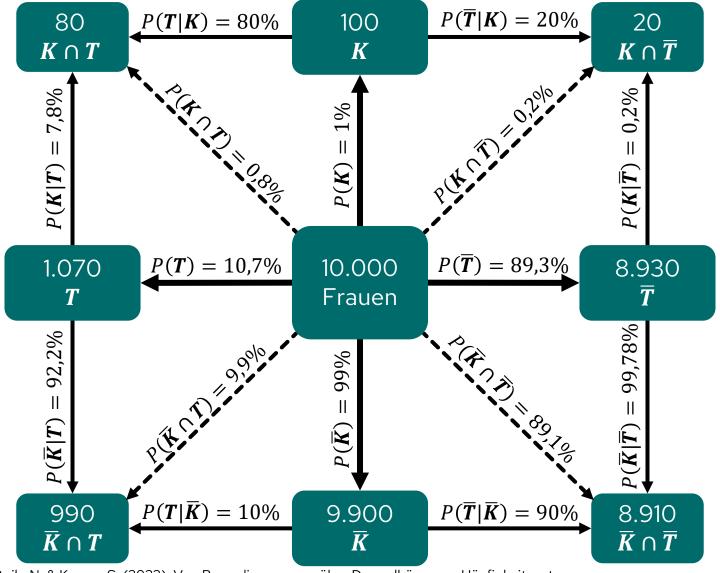
Vierfeldertafel mit Wahrscheinlichkeiten				
	T Testergebnis positiv	T Testergebnis negativ		
K tatsäch- lich krank	$P(K \cap T) = 0.8\%$	$P(K \cap \overline{T}) = 0.2\%$	$P(K)$ $= 1\%$ $= P(K \cap T)$ $+ P(K \cap \overline{T})$	
K tatsäch- lich gesund	$P(\overline{K} \cap T) = 9,9\%$	$P(\overline{K} \cap \overline{T}) = 89,1\%$	$P(\overline{K})$ $= 99\%$ $= P(\overline{K} \cap T)$ $+ P(\overline{K} \cap \overline{T})$	
	$P(T)$ $= 10,7\%$ $= P(K \cap T)$ $+ P(\overline{K} \cap T)$	$P(\overline{T})$ = 89,3% $= P(K \cap \overline{T})$ + $P(\overline{K} \cap \overline{T})$	$P(\Omega)$ $= 100\%$ $= P(K) + P(\overline{K})$ $= P(T) + P(\overline{T})$	

Vierfeldertafel mit absoluten Häufigkeiten				
		T Testergebnis positiv	T Testergebnis negativ	
,	K tatsäch- lich krank	$H(K \cap T) = 80$	$H(K \cap \overline{T}) = 20$	$H(K)$ $= 100$ $= H(K \cap T)$ $+ H(K \cap \overline{T})$
	K tatsäch- lich gesund	$H(\overline{K} \cap T) = 990$	$H(\overline{K} \cap \overline{T})$ $= 8.910$	$H(\overline{K})$ $= 9.900$ $= H(\overline{K} \cap T)$ $+ H(\overline{K} \cap \overline{T})$
		$H(T)$ $= 1.070$ $= H(K \cap T)$ $+ H(\overline{K} \cap T)$	$H(\overline{T})$ $= 8.930$ $= H(K \cap \overline{T})$ $+ H(\overline{K} \cap \overline{T})$	$H(\Omega)$ $= 10.000$ $= H(K) + H(\overline{K})$ $= H(T) + H(\overline{T})$

Darstellungen im Vergleich: **Doppeltes Baumdiagramm**



Darstellungen im Vergleich: Häufigkeits-/Wahrscheinlichkeitsnetz



Ziegenproblem

Kontakt

Prof. Dr. Jürgen Roth

RPTU

Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau

Didaktik der Mathematik (Sekundarstufen) Fortstraße 7, 76829 Landau

j.roth@rptu.de

juergen-roth.de dms.nuw.rptu.de

